Détail de l'auteur
Auteur Joseph-Alexander Verreet |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods / Wolfgang B. Hamer in ISPRS International journal of geo-information, Vol 9 n° 1 (January 2020)
[article]
Titre : Spatio-Temporal Prediction of the Epidemic Spread of Dangerous Pathogens Using Machine Learning Methods Type de document : Article/Communication Auteurs : Wolfgang B. Hamer, Auteur ; Tim Birr, Auteur ; Joseph-Alexander Verreet, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Allemagne
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diffusion spatiale
[Termes IGN] données localisées
[Termes IGN] données météorologiques
[Termes IGN] géostatistique
[Termes IGN] maladie phytosanitaire
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] rendement agricole
[Termes IGN] risque environnemental
[Termes IGN] temps réelRésumé : (auteur) Real-time identification of the occurrence of dangerous pathogens is of crucial importance for the rapid execution of countermeasures. For this purpose, spatial and temporal predictions of the spread of such pathogens are indispensable. The R package papros developed by the authors offers an environment in which both spatial and temporal predictions can be made, based on local data using various deterministic, geostatistical regionalisation, and machine learning methods. The approach is presented using the example of a crops infection by fungal pathogens, which can substantially reduce the yield if not treated in good time. The situation is made more difficult by the fact that it is particularly difficult to predict the behaviour of wind-dispersed pathogens, such as powdery mildew (Blumeria graminis f. sp. tritici). To forecast pathogen development and spatial dispersal, a modelling process scheme was developed using the aforementioned R package, which combines regionalisation and machine learning techniques. It enables the prediction of the probability of yield- relevant infestation events for an entire federal state in northern Germany at a daily time scale. To run the models, weather and climate information are required, as is knowledge of the pathogen biology. Once fitted to the pathogen, only weather and climate information are necessary to predict such events, with an overall accuracy of 68% in the case of powdery mildew at a regional scale. Thereby, 91% of the observed powdery mildew events are predicted Numéro de notice : A2020-116 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9010044 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.3390/ijgi9010044 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94723
in ISPRS International journal of geo-information > Vol 9 n° 1 (January 2020)[article]