Détail de l'auteur
Auteur P.S.A. Beck |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis Type de document : Article/Communication Auteurs : T. Poblete, Auteur ; C. Camino, Auteur ; P.S.A. Beck, Auteur Année de publication : 2020 Article en page(s) : pp 27 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] chlorophylle
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce végétale
[Termes IGN] fluorescence
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image satellite
[Termes IGN] image thermique
[Termes IGN] Italie
[Termes IGN] maladie bactérienne
[Termes IGN] maladie phytosanitaire
[Termes IGN] Olea europaea
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] télédétection aérienne
[Termes IGN] traitement d'imageRésumé : (auteur) Xylella fastidiosa (Xf) is a harmful plant pathogenic bacterium, able to infect over 500 plant species worldwide. Successful eradication and containment strategies for harmful pathogens require large-scale monitoring techniques for the detection of infected hosts, even when they do not display visual symptoms. Although a previous study using airborne hyperspectral and thermal imagery has shown promising results for the early detection of Xf-infected olive (Olea europaea) trees, further work is needed when adopting these techniques for large scale monitoring using multispectral cameras on board airborne platforms and satellites. We used hyperspectral and thermal imagery collected during a two-year airborne campaign in a Xf-infected area in southern Italy to assess the performance of spectrally constrained machine-learning algorithms for this task. The algorithms were used to assess multispectral bandsets, selected from the original hyperspectral imagery, that were compatible with large-scale monitoring from unmanned platforms and manned aircraft. In addition, the contribution of solar–induced chlorophyll fluorescence (SIF) and the temperature-based Crop Water Stress Index (CWSI) retrieved from hyperspectral and thermal imaging, respectively, were evaluated to quantify their relative importance in the algorithms used to detect Xf infection. The detection performance using support vector machine algorithms decreased from ∼80% (kappa, κ = 0.42) when using the original full hyperspectral dataset including SIF and CWSI to ∼74% (κ = 0.36) when the optimal set of six spectral bands most sensitive to Xf infection were used in addition to the CWSI thermal indicator. When neither SIF nor CWSI were used, the detection yielded less than 70% accuracy (decreasing κ to very low performance, 0.29), revealing that tree temperature was more important than chlorophyll fluorescence for the Xf detection. This work demonstrates that large-scale Xf monitoring can be supported using airborne platforms carrying multispectral and thermal cameras with a limited number of spectral bands (e.g., six to 12 bands with 10 nm bandwidths) as long as they are carefully selected by their sensitivity to the Xf symptoms. More precisely, the blue (bands between 400 and 450 nm to derive the NPQI index) and thermal (to derive CWSI from tree temperature) were the most critical spectral regions for their sensitivity to Xf symptoms in olive. Numéro de notice : A2020-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.010 Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94745
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 27 - 40[article]Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery / Pablo J. Zarco-Tejada in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
[article]
Titre : Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery Type de document : Article/Communication Auteurs : Pablo J. Zarco-Tejada, Auteur ; A. Hornero, Auteur ; Rocío Hernández-Clemente, Auteur ; P.S.A. Beck, Auteur Année de publication : 2018 Article en page(s) : pp 134 - 148 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] bande rouge
[Termes IGN] défoliation
[Termes IGN] données spatiotemporelles
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle de transfert radiatif
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Pinus (genre)
[Termes IGN] santé des forêts
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (Auteur) The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., ‘decline’ status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline. Numéro de notice : A2018-079 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.017 Date de publication en ligne : 17/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89441
in ISPRS Journal of photogrammetry and remote sensing > vol 137 (March 2018) . - pp 134 - 148[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018033 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018032 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt