Détail de l'auteur
Auteur Daniel Laumer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geocoding of trees from street addresses and street-level images / Daniel Laumer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Geocoding of trees from street addresses and street-level images Type de document : Article/Communication Auteurs : Daniel Laumer, Auteur ; Nico Lang, Auteur ; Natalie Van Doorn, Auteur Année de publication : 2020 Article en page(s) : pp 125 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des correspondances
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'arbres
[Termes IGN] détection d'objet
[Termes IGN] géocodage par adresse postale
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] inventaire
[Termes IGN] service écosystémique
[Termes IGN] zone urbaineRésumé : (auteur) We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s where recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38% of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale. Numéro de notice : A2020-124 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.001 Date de publication en ligne : 21/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94749
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 125 - 136[article]