Détail de l'auteur
Auteur Anjun Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Region level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
[article]
Titre : Region level SAR image classification using deep features and spatial constraints Type de document : Article/Communication Auteurs : Anjun Zhang, Auteur ; Xuezhi Yang, Auteur ; Shuai Fang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 36-48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] carte de confiance
[Termes IGN] champ aléatoire de Markov
[Termes IGN] chatoiement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image radar moirée
[Termes IGN] lissage de données
[Termes IGN] modélisation spatiale
[Termes IGN] précision de la classification
[Termes IGN] superpixelRésumé : (auteur) The region-level SAR image classification algorithms which combine CNN (Convolutional Neural Networks) with super-pixel have been proposed to enhance the classification accuracy compared with the pixel-level algorithms. However, the spatial constraints between the super-pixel regions are not considered, which may limit the performance of these algorithms. To address this problem, an RCC-MRF (RCC, Region Category Confidence-degree) and CNN based region-level SAR image classification algorithm which explores the deep features extracted by CNN and the spatial constraints between super-pixel regions is proposed in this paper. The initial labels of super-pixel regions are obtained using a voting strategy based on the predicted labels CNN. The unary energy function of RCC-MRF is designed to find the category that a region most probably belongs to by using the RCC term which is constructed based on the probability distributions over all categories of pixels predicted by CNN. The binary energy function of RCC-MRF explores the spatial constraints between the adjacent super-pixel regions. In our proposed algorithm, the pixel-level misclassifications can be reduced by the smoothing within regions and the region-level misclassifications will be rectified by minimizing the energy function of RCC-MRF. Experiments have been done on simulated and real SAR images to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm notably outperforms the other CNN-based region-level SAR image classification algorithms. Numéro de notice : A2020-136 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.001 Date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94752
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 36-48[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt