Détail de l'auteur
Auteur Zhen Guan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images / Zhen Guan in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)
[article]
Titre : Modeling strawberry biomass and leaf area using object-based analysis of high-resolution images Type de document : Article/Communication Auteurs : Zhen Guan, Auteur ; Amr Abd-Elrahman, Auteur ; Zhen Fan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 171 - 186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] canopée
[Termes IGN] données spatiotemporelles
[Termes IGN] hauteur de la végétation
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] orthophotoplan numérique
[Termes IGN] phénologie
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Quantifying canopy biophysical parameters is critical to agricultural research and farm management. In this study, strawberry dry biomass and leaf area were modeled statistically using high spatial and temporal resolution imagery. A mobile field data acquisition system was used to acquire thousands of very high resolution (~0.5 mm) close-range images seven times throughout the strawberry growing season. Ortho-mosaics and dense point clouds were generated through Structure from Motion (SfM) and used in Object-Based Image Analysis (OBIA) at the sub-leaf level to extract canopy structure variables such as planimetric canopy area, canopy average height, and canopy smoothness metric. Regression analysis was carried out using these image-derived canopy variables as predictors to model leaf area ( = 0.79; ten-fold cross-validation RMSE = 0.056 m2) and dry biomass ( = 0.84; ten-fold cross-validation RMSE = 7.72 g) obtained through destructive measurements. Results indicate consistent predictive power through the season and across 17 strawberry genotypes. The study showed that the canopy smoothness metric developed in this study as an indicator of canopy density could complement other variables (planimetric canopy area, canopy average height) that describe canopy geometric properties. Numéro de notice : A2020-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.021 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94757
in ISPRS Journal of photogrammetry and remote sensing > vol 163 (May 2020) . - pp 171 - 186[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt