Détail de l'auteur
Auteur Ju Hyoung Lee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture / Ju Hyoung Lee in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
[article]
Titre : Using Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture Type de document : Article/Communication Auteurs : Ju Hyoung Lee, Auteur Année de publication : 2020 Article en page(s) : pp 91 - 98 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique occidentale
[Termes IGN] données multitemporelles
[Termes IGN] erreur moyenne quadratique
[Termes IGN] erreur systématique
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] salinitéRésumé : (Auteur) To mitigate instantaneously evolving biases in satellite retrievals, a stochastic approach is applied over West Africa. This stochastic approach independently self-corrects Soil Moisture Ocean Salinity (SMOS) wet biases, unlike the cumulative density function (CDF) matching that rescales satellite retrievals with respect to several years of reference data. Ranked probability skill score (RPSS) is used as nonlocal root-mean-square errors (RMSEs) to assess stochastic retrievals. Stochastic method successfully decreases RMSEs from 0.146 m3/m3 to 0.056 m3/m3 in the Republic of Benin and from 0.080 m3/m3 to 0.038 m3/m3 in Niger, while the CDF matching method exacerbates the original SMOS biases up to 0.141 m3/m3 in Niger, and 0.120 m3/m3 in Benin. Unlike the CDF matching or European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA))–interim soil moisture, only a stochastic retrieval responds to Tropical Rainfall Measuring Mission rainfall. Based on the effects of bias correction, RPSS is suggested as a nonlocal verification without needing local measurements. Numéro de notice : A2020-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.2.91 Date de publication en ligne : 01/02/2020 En ligne : https://doi.org/10.14358/PERS.86.2.91 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94772
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 2 (February 2020) . - pp 91 - 98[article]