Détail de l'auteur
Auteur Pengyu Hou |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
PPP-RTK: from common-view to all-in-view GNSS networks / Baocheng Zhang in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : PPP-RTK: from common-view to all-in-view GNSS networks Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Robert Odolinski, Auteur Année de publication : 2022 Article en page(s) : n° 102 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] erreur de phase
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnement
[Termes IGN] résolution d'ambiguïtéRésumé : (auteur) Integer ambiguity resolution-enabled precise point positioning (PPP), otherwise known as PPP real-time kinematic (PPP-RTK), recovers the integer nature of ambiguities at a user receiver by delivering the satellite phase biases (SPBs) estimated from a global navigation satellite system (GNSS) network. Due to the rank-deficiency existing between the satellite and receiver phase biases and the ambiguities, the formulation of PPP-RTK model needs to choose a set of unknown parameters as the datum (or the S-basis). Despite the fact that there are non-unique datum choices, one prefers a PPP-RTK model where the estimable SPBs contain a minimum number of datum ambiguities. We will show that otherwise there will be discontinuities occurring in datum ambiguities that will lead to unfavorable jumps in the estimated SPBs and frequent ambiguity resolution (re-)initialization on the user side. For this to occur one normally restricts to a common-view (CV) network, where the satellites are commonly visible to all receivers involved, and constructs the PPP-RTK model by choosing the phase biases and the ambiguities, pertaining to one receiver, as the datum. In doing so the CV model is capable of estimating the SPBs with each bias containing only one datum ambiguity. In this contribution we extend the CV model to an all-in-view (AV) network case where the satellites tracked can differ across receivers, but at least one satellite is commonly visible; this is practical as the network size is normally consisting of baseline lengths of several hundreds of kilometers. Contrary to the CV model, in the AV model the phase biases and the ambiguities pertaining to one satellite is selected as the datum, such that, the number of datum ambiguities entering into the estimable SPBs is always at the minimum as the SPBs are formulated in a between-satellite single-differenced form. The benefits with AV model are that it relieves the stringent satellite visibility as required by the CV model and, at the same time, reduces to the best possible extent any jumps in the estimated SPBs as well as the necessary ambiguity resolution (re-)initialization on the user side. Experiments conducted using multi-GNSS data collected in both CV and AV networks verify that the AV model always outperforms the CV one, as measured by both the time-to-first-fix as well as the positioning accuracy when compared to very precise benchmark coordinates. Numéro de notice : A2022-899 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01693-y Date de publication en ligne : 13/12/2022 En ligne : https://doi.org/10.1007/s00190-022-01693-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102257
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 102[article]Multi-frequency phase-only PPP-RTK model applied to BeiDou data / Pengyu Hou in GPS solutions, vol 26 n° 3 (July 2022)
[article]
Titre : Multi-frequency phase-only PPP-RTK model applied to BeiDou data Type de document : Article/Communication Auteurs : Pengyu Hou, Auteur ; Baocheng Zhang, Auteur ; Yury V. Yasyukevich, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] données BeiDou
[Termes IGN] erreur de phase
[Termes IGN] fréquence multiple
[Termes IGN] modèle de simulation
[Termes IGN] phase GNSS
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] retard ionosphèrique
[Termes IGN] trajet multipleRésumé : (auteur) Typically, navigation software processes global navigation satellite system (GNSS) phase observables along with the code observables to achieve high-precision positioning. However, the unmodeled code-related errors, typically multipath effects, may deteriorate the positioning performance. Such effects are well known for the second generation BeiDou navigation satellite system (BDS-2). To prevent this adverse effect on the state-of-the-art positioning technique, namely integer ambiguity resolution-enabled precise point positioning (PPP-RTK), we propose a multi-frequency phase-only PPP-RTK model. This model excludes the code observables and addresses the rank deficiency problem underlying the phase observation equations at the undifferenced and uncombined level. To verify the model, we collect five-day triple-frequency BDS 30-s data from a network of seven reference stations (about 112 km apart) to estimate the products on the network side. Based on these products, we conduct simulated dynamic positioning at a user station to test the phase-only PPP-RTK model and compare it with the customary code-plus-phase (CPP) model. The results show that the satellite phase biases, existing only at the third frequency, have a precision of better than two centimeters, while the precision of the satellite clock and ionospheric delay is better than eight centimeters. Due to the strong correlation between individual corrections, it is necessary to assess the quality of combined products, including the satellite clock, satellite phase bias and ionospheric delay, the precision of which is several millimeters to two centimeters, which is sufficiently precise for user positioning. Regarding BDS-2 positioning, the time-to-first-fix (TTFF) of the CPP PPP-RTK is 12 epochs, while it is only three epochs for the phase-only PPP-RTK. The reason why the CPP model underperforms the phase-only model is that the BDS-2 data collected are subject to notable code multipath. We show that the code multipath in the third-generation BDS (BDS-3) data is mild, so the CPP PPP-RTK achieves instantaneous centimeter-level positioning with a TTFF of one epoch. The BDS-3 phase-only PPP-RTK obtains virtually the same positioning results, but the TTFF is two epochs. When combining BDS-2 with BDS-3, the TTFF of both models remains unchanged compared to that of the BDS-3 solutions, implying that ambiguity resolution based on the stronger dual-system CPP model is robust to the BDS-2 code multipath. However, the ambiguity-float solution of the CPP PPP-RTK is adversely affected by the code multipath and requires 43 epochs to convergence, while its phase-only counterpart needs 36 epochs. Numéro de notice : A2022-377 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01263-x Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1007/s10291-022-01263-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100637
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 76[article]Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK / Baocheng Zhang in Journal of geodesy, vol 95 n° 8 (August 2021)
[article]
Titre : Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Jiuping Zha, Auteur ; Teng Liu, Auteur Année de publication : 2021 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] correction ionosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] temps de convergenceRésumé : (auteur) PPP-RTK extends the precise point positioning (PPP) concept by incorporating the idea of integer ambiguity resolution underlying the real-time kinematic (RTK) technique, making rapid initialization and high accuracy attainable with a standalone receiver. While PPP-RTK has been well achieved by using global navigation satellite system code division multiple access observables, GLONASS PPP-RTK is nonetheless challenging due to the nature of frequency division multiple access (FDMA) observables. In this work, we present a GLONASS PPP-RTK concept that takes advantage of the integer-estimable FDMA (IE-FDMA) model recently proposed in Teunissen (in GPS Solut 23(4):1–19, 2019. https://doi.org/10.1007/s10291-019-0889-0) to guarantee rigorous integer ambiguity resolution and simultaneously takes care of the presence of the inter-frequency biases (IFBs) in homogeneous and heterogeneous network configurations. When conducting GLONASS PPP-RTK based on a network of homogeneous receivers, code and phase observation equations are used to construct the IE-FDMA model, in which the IFBs are implicitly eliminated through reparameterization. For a network consisting of heterogeneous receivers, we exclude the code observables and develop a phase-only IE-FDMA model instead, thereby circumventing the adverse effects of IFBs. For verification purposes, we collect a set of five-day global positioning system (GPS) and GLONASS data from two regional networks: one equipped with homogeneous receivers and another with heterogeneous receivers. The results show that the GLONASS-specific network corrections, including satellite clocks, satellite phase biases, and ionospheric delays estimated by the two networks, are as precise as those of their GPS-specific counterparts. Via satellite clock and phase bias corrections, we succeed in fixing both GPS and GLONASS ambiguities, shortening the convergence time to 5 (12) min, compared to 11 (18) min of ambiguity-float positioning in the case of a homogeneous (heterogeneous) network with a data sampling rate of 30 s. For ambiguity-fixed positioning, the convergence time defined in this work also indicates the time to first fix since the positioning error converges to the centimeter level once successful integer ambiguity resolution is achieved. Adding ionospheric corrections further speeds up the initialization in the two networks, with the convergence time being reduced to 0.5 (3) min. Compared with GPS-only positioning, the integration of GPS and GLONASS yields an improvement of 8–34% in accuracy and leads to a reduction of 25–50% in convergence. Numéro de notice : A2021-585 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01546-0 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1007/s00190-021-01546-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98200
in Journal of geodesy > vol 95 n° 8 (August 2021) . - n° 91[article]Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning / Pengyu Hou in GPS solutions, Vol 24 n° 4 (October 2020)
[article]
Titre : Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning Type de document : Article/Communication Auteurs : Pengyu Hou, Auteur ; Baocheng Zhang, Auteur ; Teng Liu, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] compensation Lambda
[Termes IGN] données GLONASS
[Termes IGN] données GPS
[Termes IGN] filtre de Kalman
[Termes IGN] ionosphère
[Termes IGN] ligne de base
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GLONASS
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GLONASSRésumé : (auteur) Fast ambiguity resolution is a major challenge for GLONASS phase-based applications. The integer-estimable frequency-division multiple-access (IE-FDMA) model succeeds in formulating a set of estimable GLONASS phase ambiguities and preserving the integer property, to which the classical integer ambiguity resolution, typically the least-squares ambiguity decorrelation adjustment (LAMBDA), becomes readily applicable. The initial assessment of the IE-FDMA model demonstrated instantaneous ambiguity resolution capability in case of short-baseline real-time kinematic (RTK) positioning based on ionosphere-fixed formulation, in which the data processing strategy is window (batch)-based least-squares estimation with window length ranging from one to a few epochs. Here, we extend the applicability of the IE-FDMA model to Kalman-filter-based, ionosphere-fixed, ionosphere-weighted, and ionosphere-free cases, which are, respectively, adoptable for short-, medium-, and long-baseline RTK positioning. To adapt the IE-FDMA model to the Kalman filter, we estimate, at each epoch, first the estimable ambiguities, then transform them into integer-estimable ones, and finally resolve them into correct integers. This enables the rigorous integer ambiguity resolution and, at the same time, eases the recursive construction of integer-estimable ambiguities. We analyze global positioning system (GPS) and GLONASS data of nine baselines with lengths varying from several meters to more than one hundred kilometers. The results demonstrate the feasibility of fast ambiguity resolution not only for the GLONASS phase-only short-baseline RTK positioning, but for the GPS + GLONASS medium- and long-baseline RTK positioning as well. In all cases, the fixed solution with faster (several-minutes) convergence and higher (centimeter-level) precision indicates the benefits from GLONASS ambiguity resolution as compared to the float solution. Moreover, the dual-system solution with decreased ambiguity dilution of precision (ADOP) and improved positioning precision confirms the advantages of integrating GLONASS with GPS in contrast to the GPS-only situation. Numéro de notice : A2020-524 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01008-8 Date de publication en ligne : 11/07/2020 En ligne : https://doi.org/10.1007/s10291-020-01008-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95699
in GPS solutions > Vol 24 n° 4 (October 2020) . - 14 p.[article]A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables / Baocheng Zhang in Journal of geodesy, vol 94 n°4 (April 2020)
[article]
Titre : A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Teng Liu, Auteur ; Yunbin Yuan, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] analyse de variance
[Termes IGN] corrélation croisée normalisée
[Termes IGN] corrélation temporelle
[Termes IGN] fréquence multiple
[Termes IGN] méthode des moindres carrés
[Termes IGN] méthode robuste
[Termes IGN] modèle stochastique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur
[Termes IGN] traitement de données GNSS
[Termes IGN] trajet multipleRésumé : (auteur) The proper choice of stochastic model is of great importance to global navigation satellite system (GNSS) data processing. Whereas extensive investigations into stochastic modeling are mainly based on the relative (or differential) method employing zero and/or short baselines, this work proposes an absolute method that relies upon a stand-alone receiver and works by applying the least-squares variance component estimation to the geometry-free functional model, thus facilitating the characterization of stochastic properties of multi-frequency GNSS observables at the undifferenced level. In developing the absolute method, special care has been taken of the code multipath effects by introducing ambiguity-like parameters to the code observation equations. By means of both the relative and absolute methods, we characterize the precision, cross and time correlation of the code and phase observables of two newly emerging constellations, namely the Chinese BDS and the European Galileo, collected by a variety of receivers of different types at multiple frequencies. Our first finding is that so far as the precision is concerned, the absolute method yields nearly the same numerical values as those derived by the zero-baseline-based relative method. However, the two methods give contradictory results with regard to the cross correlation, which is found (not) to occur between BDS phase observables when use has been made of the relative (absolute) method. Our explanation to this discrepancy is that the cross correlation found in the relative method originates from the parts (antenna, cable, low noise amplifier) shared by two receivers creating a zero baseline. The time correlation is only of significance when the multipath effects are present, as is the case with the short-baseline-based relative method; this correlation turns out to be largely weaker (or ideally absent) in the absolute (or zero-baseline-based relative) method. Moreover, with the absolute method, the stochastic properties determined for two receivers of the same type but subject to different multipath effects are virtually the same. We take this as a convincing evidence that the absolute method is robust against multipath effects. Hence, the absolute method proposed in the present work represents a promising complement to the relative method and appears to be particularly beneficial to GNSS positioning, navigation and timing technologies based on the undifferenced observables, typically the precise point positioning. Numéro de notice : A2020-160 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01366-8 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1007/s00190-020-01366-8 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94817
in Journal of geodesy > vol 94 n°4 (April 2020)[article]