Détail de l'auteur
Auteur Christian Helpke |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep learning for geometric and semantic tasks in photogrammetry and remote sensing / Christian Helpke in Geo-spatial Information Science, vol 23 n° 1 (March 2020)
[article]
Titre : Deep learning for geometric and semantic tasks in photogrammetry and remote sensing Type de document : Article/Communication Auteurs : Christian Helpke, Auteur ; Franz Rottensteiner, Auteur Année de publication : 2020 Article en page(s) : pp 10 - 19 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image aérienne
[Termes IGN] intelligence artificielle
[Termes IGN] photogrammétrie numérique
[Termes IGN] télédétectionRésumé : (auteur) During the last few years, artificial intelligence based on deep learning, and particularly based on convolutional neural networks, has acted as a game changer in just about all tasks related to photogrammetry and remote sensing. Results have shown partly significant improvements in many projects all across the photogrammetric processing chain from image orientation to surface reconstruction, scene classification as well as change detection, object extraction and object tracking and recognition in image sequences. This paper summarizes the foundations of deep learning for photogrammetry and remote sensing before illustrating, by way of example, different projects being carried out at the Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, in this exciting and fast moving field of research and development. Numéro de notice : A2020-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2020.1718003 Date de publication en ligne : 03/02/2020 En ligne : https://doi.org/https://doi.org/10.1080/10095020.2020.1718003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94821
in Geo-spatial Information Science > vol 23 n° 1 (March 2020) . - pp 10 - 19[article]