Détail de l'auteur
Auteur Yongjie Zheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
[article]
Titre : A novel fire index-based burned area change detection approach using Landsat-8 OLI data Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Yongjie Zheng, Auteur ; Michele Dalponte, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 104 - 112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] brûlis
[Termes IGN] détection de changement
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] incendie de forêt
[Termes IGN] seuillage d'image
[Termes IGN] signature spectraleRésumé : (auteur) Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background. Numéro de notice : A2020-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1738900 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1080/22797254.2020.1738900 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94836
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 104 - 112[article]