Détail de l'auteur
Auteur Sheng Hu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
[article]
Titre : A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data Type de document : Article/Communication Auteurs : Sheng Hu, Auteur ; Zhanjun He, Auteur ; Liang Wu, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données massives
[Termes IGN] espace urbain
[Termes IGN] extraction de données
[Termes IGN] gestion urbaine
[Termes IGN] image à haute résolution
[Termes IGN] point d'intérêt
[Termes IGN] regroupement de données
[Termes IGN] télédétection spatiale
[Termes IGN] traitement du langage naturel
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geo-data. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data – points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a center-context pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework are also discussed. Numéro de notice : A2020-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2019.101442 Date de publication en ligne : 15/11/2019 En ligne : https://doi.org/10.1016/j.compenvurbsys.2019.101442 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94853
in Computers, Environment and Urban Systems > vol 80 (March 2020)[article]