Détail de l'auteur
Auteur Zhanjun He |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mining spatiotemporal association patterns from complex geographic phenomena / Zhanjun He in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : Mining spatiotemporal association patterns from complex geographic phenomena Type de document : Article/Communication Auteurs : Zhanjun He, Auteur ; Jiannan Cai, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1162 -1 187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] diffusion spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] exploration de données géographiques
[Termes IGN] interaction spatiale
[Termes IGN] modèle entité-association
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] phénomène géographique
[Termes IGN] pollution atmosphérique
[Termes IGN] tempêteRésumé : (auteur) Spatiotemporal association pattern mining can discover interesting interdependent relationships among various types of geospatial data. However, existing mining methods for spatiotemporal association patterns usually model geographic phenomena as simple spatiotemporal point events. Therefore, they cannot be applied to complex geographic phenomena, which continuously change their properties, shapes or locations, such as storms and air pollution. The most salient feature of such complex geographic phenomena is the geographic dynamic. To fully reveal dynamic characteristics of complex geographic phenomena and discover their associated factors, this research proposes a novel complex event-based spatiotemporal association pattern mining framework. First, a complex geographic event was hierarchically modeled and represented by a new data structure named directed spatiotemporal routes. Then, sequence mining technique was applied to discover the spatiotemporal spread pattern of the complex geographic events. An adaptive spatiotemporal episode pattern mining algorithm was proposed to discover the candidate driving factors for the occurrence of complex geographic events. Finally, the proposed approach was evaluated by analyzing the air pollution in the region of Beijing-Tianjin-Hebei. The experimental results showed that the proposed approach can well address the geographic dynamic of complex geographic phenomena, such as the spatial spreading pattern and spatiotemporal interaction with candidate driving factors. Numéro de notice : A2020-340 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1566549 Date de publication en ligne : 01/02/2019 En ligne : https://doi.org/10.1080/13658816.2019.1566549 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95216
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1162 -1 187[article]A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data / Sheng Hu in Computers, Environment and Urban Systems, vol 80 (March 2020)
[article]
Titre : A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data Type de document : Article/Communication Auteurs : Sheng Hu, Auteur ; Zhanjun He, Auteur ; Liang Wu, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données massives
[Termes IGN] espace urbain
[Termes IGN] extraction de données
[Termes IGN] gestion urbaine
[Termes IGN] image à haute résolution
[Termes IGN] point d'intérêt
[Termes IGN] regroupement de données
[Termes IGN] télédétection spatiale
[Termes IGN] traitement du langage naturel
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geo-data. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data – points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a center-context pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework are also discussed. Numéro de notice : A2020-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2019.101442 Date de publication en ligne : 15/11/2019 En ligne : https://doi.org/10.1016/j.compenvurbsys.2019.101442 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94853
in Computers, Environment and Urban Systems > vol 80 (March 2020)[article]