Détail de l'auteur
Auteur Julien Denize |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)
Titre : Evaluation of time-series SAR and optical images for the study of winter land-use Type de document : Thèse/HDR Auteurs : Julien Denize, Auteur ; Eric Pottier, Directeur de thèse ; Laurence Hubert-Moy, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2019 Importance : 274 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Mathématiques et Sciences et Technologies de l'Information et de la Communication, Spécialité Signal Image Vision & GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] agriculture
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données polarimétriques
[Termes IGN] hiver
[Termes IGN] image à haute résolution
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelle
[Termes IGN] télédétection spatiale
[Termes IGN] utilisation du solIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The study of winter land-use is a major challenge in order to preserve and improve the quality of soils and surface water. However, knowledge of the spatio-temporal dynamics associated with winter land-use remains a challenge for the scientific community. In this context, the objective of this study is to evaluate the potential of time series of high spatial resolution optical and SAR images for the study of winter land-use at a local and regional scale. For that purpose, a methodology has been established to: (i) determine the most suitable classification method for identifying winter land-use ; (ii) compare Sentinel-1 SAR and Sentinel-2 optical images; (iii) define the most suitable SAR configuration by comparing three image time-series (Alos-2, Radarsat-2 and Sentinel-1).The results first of all highlighted the interest of the Random Forest classification algorithm to discriminate at a fine scale the different types of land use in winter. Secondly, they showed the value of Sentinel-2 data for mapping winter land-use at a local and regional scale. Finally, they determined that a dense time series of Sentinel-1 images was the most appropriate SAR configuration to identify winter land-use. In general, while this thesis has shown that Sentinel-2 data are best suited to studying land use in winter, SAR images are of great interest in regions with significant cloud cover, dense Sentinel-1 time-series having being defined as the most efficient. Note de contenu : General Introduction
1- Winter land-use: concepts, data and methods
2- Classification procedure for the winter land-use study at a local scale
3- SAR configuration for the study of winter land-use at a local scale
4- The study of winter land-use at a regional scale
General conclusion and perspectivesNuméro de notice : 25710 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal Image Vision & Géomatique : Rennes1 : 2019 Organisme de stage : Institut d’Electronique et de Télécommunication de Rennes nature-HAL : Thèse DOI : sans En ligne : https://hal.science/tel-02510333/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94858