Détail de l'auteur
Auteur Hao Cui |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiscale Intensity Propagation to Remove Multiplicative Stripe Noise From Remote Sensing Images / Hao Cui in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : Multiscale Intensity Propagation to Remove Multiplicative Stripe Noise From Remote Sensing Images Type de document : Article/Communication Auteurs : Hao Cui, Auteur ; Peng Jia, Auteur ; Guo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2308 - 2323 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des correspondances
[Termes IGN] bande spectrale
[Termes IGN] capteur à balayage
[Termes IGN] correction d'image
[Termes IGN] dégradation d'image
[Termes IGN] délignage
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage du rayonnement
[Termes IGN] image hyperspectrale
[Termes IGN] intensité lumineuse
[Termes IGN] itération
[Termes IGN] méthode robuste
[Termes IGN] pollution acoustiqueRésumé : (auteur) Sensor instability, dark currents, and other factors often cause stripe noise corruption in hyperspectral remote sensing images and severely limit their application in practical purposes. Previous studies have proposed numerous destriping algorithms that have yielded impressive results. Although most destriping algorithms are based on the premise of additive noise, a few studies have focused directly on multiplicative stripe noise. This article fully analyzes the characteristics of the stripe noise of OHS-01 images and proposes a multiplicative stripe noise removal method. Specifically, stripe noise is tackled by performing radiometric normalization of different columns in the image. First, the relative gain coefficients of adjacent columns are separated based on prior knowledge. Second, the local relative intensity correspondence of the image columns are established by means of intensity propagation, intensity connection, and so on. Finally, the above-mentioned process is iterated in multiscale space, and the accumulated gain correction coefficient maps were used to correct the radiation of the original image. The results of extensive experiments on simulated and real remote sensing image data demonstrate that the proposed method can, in most cases, yield desirable results. In certain cases, the results are even better, visually, and quantitatively, than those obtained using classical algorithms. Moreover, the proposed method has high robustness and efficiency. Thus, it can conform to the requirements of engineering applications. Numéro de notice : A2020-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947599 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947599 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94861
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2308 - 2323[article]