Détail de l'auteur
Auteur Deliang Xiang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation Type de document : Article/Communication Auteurs : Deliang Xiang, Auteur ; Wei Wang, Auteur ; Tao Tang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2412 - 2429 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] chatoiement
[Termes IGN] contour
[Termes IGN] fusion de données
[Termes IGN] image radar
[Termes IGN] polarimétrie radar
[Termes IGN] radar à antenne synthétique
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] vision par ordinateurRésumé : (auteur) This article proposes an efficient and adaptive statistical superpixel merging approach with edge penalty for polarimetric synthetic aperture radar (PolSAR) image segmentation. Based on the initial superpixel over-segmentation result obtained by our previously proposed adaptive polarimetric superpixel generation algorithm (Pol-ASLIC), this work achieves efficient and accurate PolSAR image segmentation by merging superpixels using the statistical region merging (SRM) framework. This article proposes to define a new dissimilarity measure between superpixels, which takes the edge penalty into consideration, leading to a reasonable and accurate merging order for superpixel pairs. With regard to the merging predicate of superpixels, a polarimetric homogeneity measurement (HoM) is used to define the merging threshold, making the merging predicate and merging threshold adaptive to the PolSAR image content. Experimental results on three airborne and one spaceborne PolSAR data sets demonstrate that the proposed approach can effectively improve the computation efficiency and segmentation accuracy in comparison with state-of-the-art merging-based methods for PolSAR data. More importantly, the proposed approach is free of parameters and easy to use. Numéro de notice : A2020-196 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2949066 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2949066 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94864
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2412 - 2429[article]