Détail de l'auteur
Auteur Shahryar K. Ahmad |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bangladesh
[Termes IGN] climat tropical
[Termes IGN] eau de surface
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image PlanetScope
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] plan d'eau
[Termes IGN] radar à antenne synthétique
[Termes IGN] reconnaissance de surface
[Termes IGN] surveillance hydrologique
[Termes IGN] télédétection spatiale
[Termes IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]