Détail de l'auteur
Auteur Xue Yang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Point-of-interest detection from Weibo data for map updating / Xue Yang in Transactions in GIS, vol 26 n° 6 (September 2022)
[article]
Titre : Point-of-interest detection from Weibo data for map updating Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Jie Gao, Auteur ; Xiaoyun Zheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2716 - 2738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] commerce de détail
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] géocodage
[Termes IGN] inférence
[Termes IGN] information sémantique
[Termes IGN] mise à jour cartographique
[Termes IGN] point d'intérêt
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Points-of-interest (POIs) geographic information system data are increasingly important for supporting map generation and navigation services, although updating their semantic and location information still largely depends on manual labor. In this study, we propose a novel method to automatically detect the changes in POIs from Chinese text and check-in position data provided by the Chinese social media platform, Weibo. The proposed method includes three steps: (1) POI name recognition; (2) location confirmation; (3) and change detection. First, we propose recognizing a POI's name from Weibo text using the improved conditional random field algorithm. Then, we detect the location of each named POI by integrating the text address with the check-in position. The changes in the detected POIs are recognized by extracting the status words from Weibo text and a three-level status word database. To verify the effectiveness of the proposed method, we examine Wuhan as a case and detect the changes in the commercial POI using real-world Weibo data collected from January to September 2020. Based on the validation of three common map platforms, the data provided and the manual field investigation of 55 random samples, the identification accuracies for newly added POIs, the unchanged POIs, and expired POIs are approximately 100, 95.8, and 91.7%, respectively. Numéro de notice : A2022-734 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12982 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12982 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101701
in Transactions in GIS > vol 26 n° 6 (September 2022) . - pp 2716 - 2738[article]Attributing pedestrian networks with semantic information based on multi-source spatial data / Xue Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
[article]
Titre : Attributing pedestrian networks with semantic information based on multi-source spatial data Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Kathleen Stewart, Auteur ; Mengyuan Fang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 31 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] extraction de données
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] ondelette
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du sol
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The lack of associating pedestrian networks, i.e. the paths and roads used for non-vehicular travel, with information about semantic attribution is a major weakness for many applications, especially those supporting accurate pedestrian routing. Researchers have developed various algorithms to generate pedestrian walkways based on datasets, including high-resolution images, existing map databases, and GPS data; however, the semantic attribution of pedestrian walkways is often ignored. The objective of our study is to automatically extract semantic information including incline values and the different categories of pedestrian paths from multi-source spatial data, such as crowdsourced GPS tracking data, land use data, and motor vehicle road (MVR) networks. Incline values for each pedestrian path were derived from tracking data through elevation filtering using wavelet theory and a similarity-based map-matching method. To automatically categorize pedestrian paths into five classes including sidewalk, crosswalk, entrance walkway, indoor path, and greenway, we developed a hierarchical strategy of spatial analysis using land use data and MVR networks. The effectiveness of our proposed method is demonstrated using real datasets including GPS tracking data collected by volunteers, land use data acquired from OpenStreetMap, and MVR network data downloaded from Gaode Map. Numéro de notice : A2022-083 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1902530 En ligne : https://doi.org/10.1080/13658816.2021.1902530 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99480
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 31 - 54[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022011 SL Revue Centre de documentation Revues en salle Disponible Pedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : Pedestrian network generation based on crowdsourced tracking data Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Luliang Tang, Auteur ; Chang Ren, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1051 - 1074 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] base de données multi-représentation
[Termes IGN] correction géométrique
[Termes IGN] correction topographique
[Termes IGN] dimension fractale
[Termes IGN] données localisées des bénévoles
[Termes IGN] estimation par noyau
[Termes IGN] mobilité urbaine
[Termes IGN] navigation pédestre
[Termes IGN] regroupement de pointsRésumé : (auteur) Pedestrian networks play an important role in various applications, such as pedestrian navigation services and mobility modeling. This paper presents a novel method to extract pedestrian networks from crowdsourced tracking data based on a two-layer framework. This framework includes a walking pattern classification layer and a pedestrian network generation layer. In the first layer, we propose a multi-scale fractal dimension (MFD) algorithm in order to recognize the two different types of walking patterns: walking with a clear destination (WCD) or walking without a clear destination (WOCD). In the second layer, we generate the pedestrian network by combining the pedestrian regions and pedestrian paths. The pedestrian regions are extracted based on a modified connected component analysis (CCA) algorithm from the WOCD traces. We generate the pedestrian paths using a kernel density estimation (KDE)-based point clustering algorithm from the WCD traces. The pedestrian network generation results using two actual crowdsourced datasets show that the proposed method has good performance in both geometrical correctness and topological correctness. Numéro de notice : A2020-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1702197 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.1080/13658816.2019.1702197 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94888
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 1051 - 1074[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible