Détail de l'auteur
Auteur Xiaoping Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)
[article]
Titre : The iterative convolution–thresholding method (ICTM) for image segmentation Type de document : Article/Communication Auteurs : Dong Wang, Auteur ; Xiaoping Wang, Auteur Année de publication : 2022 Article en page(s) : n° 108794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contour
[Termes IGN] convergence
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] itération
[Termes IGN] segmentation d'image
[Termes IGN] seuillageRésumé : (auteur) Variational methods, which have been tremendously successful in image segmentation, work by minimizing a given objective functional. The objective functional usually consists of a fidelity term and a regularization term. Because objective functionals may vary from different types of images, developing an efficient, simple, and general numerical method to minimize them has become increasingly vital. However, many existing methods are model-based, converge relatively slowly, or involve complicated techniques. In this paper, we develop a novel iterative convolution–thresholding method (ICTM) that is simple, efficient, and applicable to a wide range of variational models for image segmentation. In ICTM, the interface between two different segment domains is implicitly represented by the characteristic functions of domains. The fidelity term is usually written into a linear functional of the characteristic functions, and the regularization term is approximated by a functional of characteristic functions in terms of heat kernel convolution. This allows us to design an iterative convolution–thresholding method to minimize the approximate energy. The method has the energy-decaying property, and thus the unconditional stability is theoretically guaranteed. Numerical experiments show that the method is simple, easy to implement, robust, and applicable to various image segmentation models. Numéro de notice : A2022-779 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108794 Date de publication en ligne : 14/05/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101857
in Pattern recognition > vol 130 (October 2022) . - n° 108794[article]Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model / Xiaoping Wang in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
[article]
Titre : Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model Type de document : Article/Communication Auteurs : Xiaoping Wang, Auteur ; Fei Zhang, Auteur ; Hsiang-Te Kung, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 953 - 973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme de filtrage
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] état du sol
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Sentinel-MSI
[Termes IGN] sel
[Termes IGN] sol salin
[Termes IGN] zone sècheRésumé : (auteur) The remote sensing information on the extraction method is of great importance to improve the accuracy and efficiency of soil salinization information. The objective of this study is to develop remote sensing extraction techniques to improve soil salinization maps. The following procedures were used in this study: (1) developed a fractional-order algorithm-based methodology of filter from high-resolution remote sensing imagery (Sentinel-2 MSI); (2) investigated the changing trend of image under different order filters; and (3) used a grid-search algorithm-support vector machines (GS-SVM) classification to employ extraction information of soil salinization. The results showed that the Fractional-order filter method outperformed the integer derivative in extracted information of soil salinization. In comparison of the classification accuracy between fractional-order processing algorithm and integer-order image processing algorithm, the fractional order has improved remarkably. The optimal classification model was 0.6 order, 0.8 order, 1.4 order, 1.6 order, and 1.8 order models. The overall accuracy and kappa coefficient (κ) of these models are 91.90% and 0.90, respectively. Analysing and comparing between soil salt index and filtering algorithm (1.2 order), the researchers found that the classification results of the two methods are similar. In general, this method can successfully extract soil salinization information in dry regions. Numéro de notice : A2020-213 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1654142 Date de publication en ligne : 14/08/2019 En ligne : https://doi.org/10.1080/01431161.2019.1654142 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94898
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 953 - 973[article]