Détail de l'auteur
Auteur Huapeng Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images / Xiaohui Ding in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
[article]
Titre : A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images Type de document : Article/Communication Auteurs : Xiaohui Ding, Auteur ; Shuqing Zhang, Auteur ; Huapeng Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1093 - 1117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] bande spectrale
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de données
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] précision de la classification
[Termes IGN] test de performanceRésumé : (auteur) With hundreds of spectral bands, the rise of the issue of dimensionality in the classification of hyperspectral images is usually inevitable. In this paper, a restrictive polymorphic ant colony algorithm (RPACA) based band selection algorithm (RPACA-BS) was proposed to reduce the dimensionality of hyperspectral images. In the proposed algorithm, both local and global searches were conducted considering band similarity. Moreover, the problem of falling into local optima, due to the selection of similar band subsets although travelling different paths, was solved by varying the pheromone matrix between ants moving in opposite directions. The performance of the proposed RPACA-BS algorithm was evaluated using three public datasets (the Indian Pines, Pavia University and Botswana datasets) based on average overall classification accuracy (OA) and CPU processing time. The experimental results showed that average OA of RPACA-BS was up to 89.80%, 94.96% and 92.17% for the Indian Pines, Pavia University and Botswana dataset, respectively, which was higher than that of the benchmarks, including the ant colony algorithm-based band selection algorithm (ACA-BS), polymorphic ant colony algorithm-based band selection algorithm (PACA-BS) and other band selection methods (e.g. the ant lion optimizer-based band selection algorithm). Meanwhile, the time consumed by RPACA-BS and PACA-BS were slightly lower than that of ACA-BS but obviously lower than that of other benchmarks. The proposed RPACA-BS method is thus able to effectively enhance the search abilities and efficiencies of the ACA-BS and PACA-BS algorithms to handle the complex band selection issue for hyperspectral remotely sensed images. Numéro de notice : A2020-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1655810 Date de publication en ligne : 20/08/2019 En ligne : https://doi.org/10.1080/01431161.2019.1655810 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94899
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 1093 - 1117[article]