Détail de l'auteur
Auteur Lin Yang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Extracting knowledge from legacy maps to delineate eco-geographical regions Type de document : Article/Communication Auteurs : Lin Yang, Auteur ; Xinming Li, Auteur ; Qinye Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte ancienne
[Termes IGN] carte climatique
[Termes IGN] cartographie écologique
[Termes IGN] Chine
[Termes IGN] délimitation
[Termes IGN] données cartographiques
[Termes IGN] écorégion
[Termes IGN] extraction de données
[Termes IGN] logique floue
[Termes IGN] sous ensemble flou
[Termes IGN] zone tamponRésumé : (auteur) Legacy ecoregion maps contain knowledge on relationships between eco-region units and their environmental factors. This study proposes a method to extract knowledge from legacy area-class maps to formulate a set of fuzzy membership functions useful for regionalization. We develop a buffer zone approach to reduce the uncertainty of boundaries between eco-region units on area-class maps. We generate buffer zones with a Euclidean distance perpendicular to the boundaries, then the original eco-region units without buffer zones serve as the basic units to generate the probability density functions (PDF) of environmental variables. Then, we transform the PDFs to fuzzy membership functions for class-zones on the map. We demonstrate the proposed method with a climatic zone map of China. The results showed that the buffer zone approach effectively reduced the uncertainties of boundaries. A buffer distance of 10–15 km was recommended in this study. The climatic zone map generated based on the extracted fuzzy membership functions showed a higher spatial stratification heterogeneity (compared to the original map). Based on the fuzzy membership functions with climate data of 1961–2015, we also prepared an updated climatic zone map. This study demonstrates the prospects of using fuzzy membership functions to delineate area classes for regionalization purpose. Numéro de notice : A2021-025 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1806284 Date de publication en ligne : 17/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1806284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96692
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 250 - 272[article]Predictive mapping with small field sample data using semi‐supervised machine learning / Fei Du in Transactions in GIS, Vol 24 n° 2 (April 2020)
[article]
Titre : Predictive mapping with small field sample data using semi‐supervised machine learning Type de document : Article/Communication Auteurs : Fei Du, Auteur ; A - Xing Zhu, Auteur ; Jing Liu, Auteur ; Lin Yang, Auteur Année de publication : 2020 Article en page(s) : pp 315 - 331 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] covariance
[Termes IGN] échantillon
[Termes IGN] modèle de simulation
[Termes IGN] représentation cartographiqueRésumé : (Auteur) Existing predictive mapping methods usually require a large number of field samples with good representativeness as input to build reliable predictive models. In mapping practice, however, we often face situations when only small sample data are available. In this article, we present a semi‐supervised machine learning approach for predictive mapping in which the natural aggregation (clustering) patterns of environmental covariate data are used to supplement limited samples in prediction. This approach was applied to two soil mapping case studies. Compared with field sample only approaches (decision trees, logistic regression, and support vector machines), maps using the proposed approach can better capture the spatial variation of soil types and achieve higher accuracy with limited samples. A cross validation shows further that the proposed approach is less sensitive to the specific field sample set used and thus more robust when field sample data are small. Numéro de notice : A2020-174 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12598 Date de publication en ligne : 04/12/2019 En ligne : https://doi.org/10.1111/tgis.12598 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94900
in Transactions in GIS > Vol 24 n° 2 (April 2020) . - pp 315 - 331[article]