Détail de l'auteur
Auteur Paulina T. Marczak |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting carbon accumulation in temperate forests of Ontario, Canada using a LiDAR-initialized growth-and-yield model / Paulina T. Marczak in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Predicting carbon accumulation in temperate forests of Ontario, Canada using a LiDAR-initialized growth-and-yield model Type de document : Article/Communication Auteurs : Paulina T. Marczak, Auteur ; Karin Y. Van Ewijk, Auteur ; Paul M. Treitz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 29 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] changement climatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] forêt tempérée
[Termes IGN] modèle de croissance végétale
[Termes IGN] Ontario (Canada)
[Termes IGN] peuplement forestier
[Termes IGN] photo-interprétation
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] semis de pointsRésumé : (auteur) Climate warming has led to an urgent need for improved estimates of carbon accumulation in uneven-aged, mixed temperate forests, where high uncertainty remains. We investigated the feasibility of using LiDAR-derived forest attributes to initialize a growth and yield (G&Y) model in complex stands at the Petawawa Research Forest (PRF) in eastern Ontario, Canada; i.e., can G&Y models based on LiDAR provide accurate predictions of aboveground carbon accumulation in complex forests compared to traditional inventory-based estimates? Applying a local G&Y model, we forecasted aboveground carbon stock (tons/ha) and accumulation (tons/ha/yr) using recurring plot measurements from 2012–2016, FVS1. We applied statistical predictors derived from LiDAR to predict stem density (SD), stem diameter distribution (SDD), and basal area distribution (BA_dist). These data, along with measured species abundance, were used to initialize a second model (FVS2). A third model was tested using LiDAR-initialized tree lists and photo-interpreted estimates of species abundance (i.e., FVS3). The carbon stock projections for 2016 from the inventory-based G&Y model) were equivalent to validation carbon stocks measured in 2016 at all size-class levels (p 0.05). At the plot level, LiDAR-based predictions of carbon accumulation over a nine-year period did not differ when using either inventory or photo-interpreted species (p Numéro de notice : A2020-222 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010201 Date de publication en ligne : 06/01/2020 En ligne : https://doi.org/10.3390/rs12010201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94934
in Remote sensing > vol 12 n° 1 (January 2020) . - 29 p.[article]