Détail de l'auteur
Auteur James A. Thompson |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces / James A. Thompson in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces Type de document : Article/Communication Auteurs : James A. Thompson, Auteur ; Michael S. Ramsey, Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] classification pixellaire
[Termes IGN] éruption volcanique
[Termes IGN] image MASTER
[Termes IGN] image thermique
[Termes IGN] incertitude des données
[Termes IGN] Kilauea (volcan)
[Termes IGN] lave
[Termes IGN] rayonnement infrarouge thermique
[Termes IGN] surveillance géologique
[Termes IGN] température
[Termes IGN] volcanRésumé : (auteur) Using thermal infrared (TIR) data from multiple instruments and platforms for analysis of an entire active volcanic system is becoming more common with the increasing availability of new data. However, the accuracy and uncertainty associated with these combined datasets are poorly constrained over the full range of eruption temperatures and possible volcanic products. Here, four TIR datasets acquired over active lava surfaces are compared to quantify the uncertainty, accuracy, and variability in derived surface radiance, emissivity, and kinetic temperature. These data were acquired at Kīlauea volcano in Hawai’i, USA, in January/February 2017 and 2018. The analysis reveals that spatial resolution strongly limits the accuracy of the derived surface thermal properties, resulting in values that are significantly below the expected values for molten basaltic lava at its liquidus temperature. The surface radiance is ~2400% underestimated in the orbital data compared to only ~200% in ground-based data. As a result, the surface emissivity is overestimated and the kinetic temperature is underestimated by at least 30% and 200% in the airborne and orbital datasets, respectively. A thermal mixed pixel separation analysis is conducted to extract only the molten fraction within each pixel in an attempt to mitigate this complicating factor. This improved the orbital and airborne surface radiance values to within 15% of the expected values and the derived emissivity and kinetic temperature within 8% and 12%, respectively. It is, therefore, possible to use moderate spatial resolution TIR data to derive accurate and reliable emissivity and kinetic temperatures of a molten lava surface that are comparable to the higher resolution data from airborne and ground-based instruments. This approach, resulting in more accurate kinetic temperature and emissivity of the active surfaces, can improve estimates of flow hazards by greatly improving lava flow propagation models that rely on these data. Numéro de notice : A2020-224 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010193 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010193 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94939
in Remote sensing > vol 12 n° 1 (January 2020) . - 21 p.[article]