Détail de l'auteur
Auteur Wolfgang Ertel |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Introduction to Artificial Intelligence Type de document : Monographie Auteurs : Wolfgang Ertel, Auteur Editeur : Springer International Publishing Année de publication : 2017 Importance : 365 p. ISBN/ISSN/EAN : 978-3-319-58487-4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification bayesienne
[Termes IGN] entropie maximale
[Termes IGN] exploration de données
[Termes IGN] PROLOG
[Termes IGN] raisonnement sémantique
[Termes IGN] réseau neuronal artificielRésumé : (éditeur) This concise and accessible textbook supports a foundation or module course on A.I., covering a broad selection of the subdisciplines within this field. The book presents concrete algorithms and applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks and reinforcement learning. Topics and features: presents an application-focused and hands-on approach to learning the subject; provides study exercises of varying degrees of difficulty at the end of each chapter, with solutions given at the end of the book; supports the text with highlighted examples, definitions, and theorems; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; contains an extensive bibliography for deeper reading on further topics; supplies additional teaching resources, including lecture slides and training data for learning algorithms, at an associated website. Note de contenu : 1- Introduction
2- Propositional Logic
3- First-order Predicate Logic
4- Limitations of Logic
5- Logic Programming with PROLOG
6- Search, Games and Problem Solving
7- Reasoning with Uncertainty
8- Machine Learning and Data Mining
9- Neural Networks
10- Reinforcement Learning
11- Solutions for the ExercisesNuméro de notice : 25753 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Monographie En ligne : https://doi.org/10.1007/978-3-319-58487-4 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94945