Détail de l'auteur
Auteur Jean-Michel Marin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Bayesian essentials with R Type de document : Monographie Auteurs : Jean-Michel Marin, Auteur ; Christian P. Robert, Auteur Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2014 Importance : 296 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-4614-8687-9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme de Métropolis-Hastings
[Termes IGN] classification bayesienne
[Termes IGN] échantillonnage de Gibbs
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle linéaire
[Termes IGN] problème de Dirichlet
[Termes IGN] R (langage)
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] théorème de BayesRésumé : (éditeur) This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. The stakes are high and the reader determines the outcome. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. This works in conjunction with the bayess package. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels, as exemplified by courses given at Université Paris Dauphine (France), University of Canterbury (New Zealand), and University of British Columbia (Canada). It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. A strength of the text is the noteworthy emphasis on the role of models in statistical analysis. Note de contenu : 1- User’s Manual
2- Normal Models
3- Regression and Variable Selection
4- Generalized Linear Models
5- Capture–Recapture Experiments
6- Mixture Models
7- Time Series
8- Image AnalysisNuméro de notice : 25759 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Monographie En ligne : https://link.springer.com/book/10.1007%2F978-1-4614-8687-9#toc Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94954