Détail de l'auteur
Auteur Zhanchi Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Discrimination of different sea ice types from CryoSat-2 satellite data using an Object-based Random Forest (ORF) / Su Shu in Marine geodesy, Vol 43 n° 3 (May 2020)
[article]
Titre : Discrimination of different sea ice types from CryoSat-2 satellite data using an Object-based Random Forest (ORF) Type de document : Article/Communication Auteurs : Su Shu, Auteur ; Xinghua Zhou, Auteur ; Zhanchi Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 213 - 233 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Arctique, océan
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] forme d'onde
[Termes IGN] glace de mer
[Termes IGN] image CryosatRésumé : (Auteur) Sea ice type is one of the most sensitive variables in Arctic sea ice monitoring, and it is important for the retrieval of ice thickness. In this study, we analyzed various waveform features that characterize the echo waveform shape and Sigma0 (i.e., backscatter coefficient) of CryoSat-2 synthetic aperture radar altimeter data over different sea ice types. Arctic and Antarctic Research Institute operational ice charts were input as reference. An object-based random forest (ORF) classification method is proposed with overall classification accuracy of 90.1%. Accuracy of 92.7% was achieved for first-year ice (FYI), which is the domain ice type in the Arctic. Accuracy of 76.7% was achieved at the border of FYI and multiyear ice (MYI), which is better than current state-of-the-art methods. Accuracy of 83.8% was achieved for MYI. Results showed the overall accuracy of the ORF method was increased by ∼8% in comparison with other methods, and the classification accuracy at the border of FYI and MYI was increased by ∼10.5%. Nevertheless, ORF classification performance might be influenced by the selected waveform features, snow loading, and the ability to distinguish sea ice from leads. Numéro de notice : A2020-183 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2019.1671560 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/01490419.2019.1671560 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94971
in Marine geodesy > Vol 43 n° 3 (May 2020) . - pp 213 - 233[article]