Détail de l'auteur
Auteur Wei Xu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
[article]
Titre : Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame Type de document : Article/Communication Auteurs : Jianchen Liu, Auteur ; Wei Xu, Auteur ; Bingxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 9673 - 9681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation
[Termes IGN] auto-étalonnage
[Termes IGN] compensation par faisceaux
[Termes IGN] courbure de la Terre
[Termes IGN] distorsion d'image
[Termes IGN] données GNSS
[Termes IGN] hauteur de vol
[Termes IGN] image captée par drone
[Termes IGN] point d'appui
[Termes IGN] précision altimétrique
[Termes IGN] précision cartographique
[Termes IGN] projectionRésumé : (auteur) Unmanned aerial vehicle (UAV) photogrammetry without ground control points (GCPs) can effectively improve production efficiency and reduce production costs; this method is especially advantageous in areas that are difficult for people to reach. However, there are a series of problems in UAV photogrammetry without GCPs. One of the main problems is that the accurate camera parameters cannot be obtained through the on-the-job calibration method; furthermore, the inaccurate principal distance will have a serious impact on the elevation accuracy of object points. The other one is that the projection deformation and earth curvature also have impacts on the elevation accuracy, when the mapping task is carried out in the map projection frame. This article explains the specific reasons of elevation errors and proposes an effective solution. First, the camera self-calibration is performed in a geocentric frame with control strips. Then, the exterior orientation elements of the images are calculated in the map projection frame without control strips. Finally, the elevation errors that are caused by the map projection deformation and the earth’s curvature are corrected. The experimental results show that the proposed method can achieve accurate mapping, and the elevation accuracy has been significantly improved. Numéro de notice : A2021-811 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3052466 Date de publication en ligne : 29/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3052466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98884
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9673 - 9681[article]Soil moisture estimation with SVR and data augmentation based on alpha approximation method / Wei Xu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Soil moisture estimation with SVR and data augmentation based on alpha approximation method Type de document : Article/Communication Auteurs : Wei Xu, Auteur ; Zhaoxu Zhang, Auteur ; Qiming Qin, Auteur Année de publication : 2020 Article en page(s) : pp 3190 - 3201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approximation
[Termes IGN] erreur moyenne quadratique
[Termes IGN] humidité du sol
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] irrigation
[Termes IGN] modèle de régression
[Termes IGN] surveillance agricoleRésumé : (auteur) Soil moisture content is an important parameter in hydrological, meteorological, and agricultural applications. Balenzano et al. proposed the alpha approximation method in 2011 for solving some complex issues during the retrieval of soil moisture over agricultural crops with synthetic aperture radar data. However, determining the constraints and solving the underdetermined system of equations in this method add new challenges. Considering the questions of constraints and underdetermined system of equations, the alpha approximation method is used to augment the measured data, and can avoid solving the underdetermined system of equations with constraints directly. Then, these data are applied in a support vector regression machine for soil moisture estimation. It is found that when an optimal model is determined, the method proposed in this article is superior to the direct use of the alpha approximation method, and the root-mean-squared error (RMSE) decreased from 0.0775 to 0.0339 and R 2 increased from 0.0467 to 0.6491. In addition, the method obtained a good result from a data set collected that included a different growing period of crops by changing the standardized method from StandardScaler to Scale , where the RMSE is 0.0501 and R 2 is 0.3204. This indicates the good generalization capability of this method. In conclusion, the proposed method solves the two questions effectively and provides a potential way for long-time or large-scale soil moisture monitoring with much less in situ measurements. Numéro de notice : A2020-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950321 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94981
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3190 - 3201[article]