Détail de l'auteur
Auteur Lionel Pibre |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Localisation d'objets urbains à partir de sources multiples dont des images aériennes / Lionel Pibre (2018)
Titre : Localisation d'objets urbains à partir de sources multiples dont des images aériennes Type de document : Thèse/HDR Auteurs : Lionel Pibre, Auteur ; Marc Chaumont, Auteur Editeur : Montpellier : Université de Montpellier Année de publication : 2018 Importance : 143 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Montpellier en InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] collectivité territoriale
[Termes IGN] diffusion de l'information
[Termes IGN] données multicapteurs
[Termes IGN] données multisources
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image aérienne
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation sémantique
[Termes IGN] séparateur à vaste marge
[Termes IGN] télédétection
[Termes IGN] urbanisme
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Cette thèse aborde des problèmes liés à la localisation et la reconnaissance d’objets urbains dans des images multi-sources (optique, infrarouge, Modèle Numérique de Surface) de très haute précision acquises par voie aérienne.Les objets urbains (lampadaires, poteaux, voitures, arbres…) présentent des dimensions, des formes, des textures et des couleurs très variables. Ils peuvent être collés les uns les autres et sont de petite taille par rapport à la dimension d’une image. Ils sont présents en grand nombre mais peuvent être partiellement occultés. Tout ceci rend les objets urbains difficilement identifiables par les techniques actuelles de traitement d’images.Dans un premier temps, nous avons comparé les approches d’apprentissage classiques, composées de deux étapes - extraction de caractéristiques par le biais d’un descripteur prédéfini et utilisation d’un classifieur - aux approches d’apprentissage profond (Deep Learning), et plus précisément aux réseaux de neurones convolutionnels (CNN). Les CNN donnent de meilleurs résultats mais leurs performances ne sont pas suffisantes pour une utilisation industrielle. Nous avons donc proposé deux améliorations.Notre première contribution consiste à combiner de manière efficace les données provenant de sources différentes. Nous avons comparé une approche naïve qui consiste à considérer toutes les sources comme des composantes d’une image multidimensionnelle à une approche qui réalise la fusion des informations au sein même du CNN. Pour cela, nous avons traité les différentes informations dans des branches séparées du CNN. Nous avons ainsi montré que lorsque la base d’apprentissage contient peu de données, combiner intelligemment les sources dans une phase de pré-traitement (nous combinons l'optique et l'infrarouge pour créer une image NDVI) avant de les donner au CNN améliore les performances.Pour notre seconde contribution, nous nous sommes concentrés sur le problème des données incomplètes. Jusque-là, nous considérions que nous avions accès à toutes les sources pour chaque image mais nous pouvons aussi nous placer dans le cas où une source n’est pas disponible ou utilisable pour une image. Nous avons proposé une architecture permettant de prendre en compte toutes les données, même lorsqu’il manque une source sur une ou plusieurs images. Nous avons évalué notre architecture et montré que sur un scénario d’enrichissement, cette architecture permet d'obtenir un gain de plus de 2% sur la F-mesure.Les méthodes proposées ont été testées sur une base de données publique. Elles ont pour objectif d’être intégrées dans un logiciel de la société Berger-Levrault afin d’enrichir les bases de données géographiques et ainsi faciliter la gestion du territoire par les collectivités locales. Note de contenu : 1- Introduction
2- Etat de l'art
3- Comparaison entre des méthodes d’apprentissage automatique classiques et du deep learning
4- Fusion des données
5- Données incomplètes et réseau de neurones convolutionnels
6- Conclusions et perspectivesNuméro de notice : 25785 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Montpellier : 2018 Organisme de stage : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier) / société Berger-Levrault nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2018MONTS107 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94985