Détail de l'auteur
Auteur Yueguan Yan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network / Yueguan Yan in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
[article]
Titre : Classification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network Type de document : Article/Communication Auteurs : Yueguan Yan, Auteur ; Haixu Yan, Auteur ; Junting Guo, Auteur ; Huayang Dai, Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] objet 3D
[Termes IGN] reconnaissance d'objets
[Termes IGN] semis de points clairsemésRésumé : (auteur) The classification and segmentation of large-scale, sparse, LiDAR point cloud with deep learning are widely used in engineering survey and geoscience. The loose structure and the non-uniform point density are the two major constraints to utilize the sparse point cloud. This paper proposes a lightweight auxiliary network, called the rotated density-based network (RD-Net), and a novel point cloud preprocessing method, Grid Trajectory Box (GT-Box), to solve these problems. The combination of RD-Net and PointNet was used to achieve high-precision 3D classification and segmentation of the sparse point cloud. It emphasizes the importance of the density feature of LiDAR points for 3D object recognition of sparse point cloud. Furthermore, RD-Net plus PointCNN, PointNet, PointCNN, and RD-Net were introduced as comparisons. Public datasets were used to evaluate the performance of the proposed method. The results showed that the RD-Net could significantly improve the performance of sparse point cloud recognition for the coordinate-based network and could improve the classification accuracy to 94% and the segmentation per-accuracy to 70%. Additionally, the results concluded that point-density information has an independent spatial–local correlation and plays an essential role in the process of sparse point cloud recognition. Numéro de notice : A2020-256 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 0.3390/ijgi9030182 Date de publication en ligne : 24/03/2020 En ligne : https://doi.org/10.3390/ijgi9030182 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95012
in ISPRS International journal of geo-information > vol 9 n° 3 (March 2020) . - 19 p.[article]