Détail de l'auteur
Auteur Khushbakht Rehman |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
[article]
Titre : Integration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model Type de document : Article/Communication Auteurs : Nadeem Fareed, Auteur ; Khushbakht Rehman, Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] agriculture de précision
[Termes IGN] données GNSS
[Termes IGN] données lidar
[Termes IGN] extraction automatique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] modèle dynamique
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] système d'information géographique
[Termes IGN] télédétectionRésumé : (auteur) Automated feature extraction from drone-based image point clouds (DIPC) is of paramount importance in precision agriculture (PA). PA is blessed with mechanized row seedlings to attain maximum yield and best management practices. Therefore, automated plantation rows extraction is essential in crop harvesting, pest management, and plant grow-rate predictions. Most of the existing research is consists on red, green, and blue (RGB) image-based solutions to extract plantation rows with the minimal background noise of test study sites. DIPC-based DSM row extraction solutions have not been tested frequently. In this research work, an automated method is designed to extract plantation row from DIPC-based DSM. The chosen plantation compartments have three different levels of background noise in UAVs images, therefore, methodology was tested under different background noises. The extraction results were quantified in terms of completeness, correctness, quality, and F1-score values. The case study revealed the potential of DIPC-based solution to extraction the plantation rows with an F1-score value of 0.94 for a plantation compartment with minimal background noises, 0.91 value for a highly noised compartment, and 0.85 for a compartment where DIPC was compromised. The evaluation suggests that DSM-based solutions are robust as compared to RGB image-based solutions to extract plantation-rows. Additionally, DSM-based solutions can be further extended to assess the plantation rows surface deformation caused by humans and machines and state-of-the-art is redefined. Numéro de notice : A2020-260 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9030151 Date de publication en ligne : 06/03/2020 En ligne : https://doi.org/10.3390/ijgi9030151 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95020
in ISPRS International journal of geo-information > vol 9 n° 3 (March 2020) . - 26 p.[article]