Détail de l'auteur
Auteur Zhitao Wu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China / Mingyue Wang in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
[article]
Titre : Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the yellow river, China Type de document : Article/Communication Auteurs : Mingyue Wang, Auteur ; Jun’e Fu, Auteur ; Zhitao Wu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] coefficient de corrélation
[Termes IGN] données météorologiques
[Termes IGN] données spatiotemporelles
[Termes IGN] écosystème
[Termes IGN] Fleuve jaune (Chine)
[Termes IGN] image Aqua-MODIS
[Termes IGN] image SPOT
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] précipitation
[Termes IGN] série temporelle
[Termes IGN] température
[Termes IGN] variation saisonnièreRésumé : (auteur) Research on vegetation variation is an important aspect of global warming studies. The quantification of the relationship between vegetation change and climate change has become a central topic and challenge in current global change studies. The source region of the Yellow River (SRYR) is an appropriate area to study global change because of its unique natural conditions and vulnerable terrestrial ecosystem. Therefore, we chose the SRYR for a case study to determine the driving forces behind vegetation variation under global warming. Using the Normalized Difference Vegetation Index (NDVI) and climate data, we investigated the NDVI variation in the growing season in the region from 1998 to 2016 and its response to climate change based on trend analysis, the Mann–Kendall trend test and partial correlation analysis. Finally, an NDVI–climate mathematical model was built to predict the NDVI trends from 2020 to 2038. The results indicated the following: (1) over the past 19 years, the NDVI showed an increasing trend, with a growth rate of 0.00204/a. There was an upward trend in NDVI over 71.40% of the region. (2) Both the precipitation and temperature in the growing season showed upward trends over the last 19 years. NDVI was positively correlated with precipitation and temperature. The areas with significant relationships with precipitation covered 31.01% of the region, while those with significant relationships with temperature covered 56.40%. The sensitivity of the NDVI to temperature was higher than that to precipitation. Over half (56.58%) of the areas were found to exhibit negative impacts of human activities on the NDVI. (3) According to the simulation, the NDVI will increase slightly over the next 19 years, with a linear tendency of 0.00096/a. From the perspective of spatiotemporal changes, we combined the past and future variations in vegetation, which could adequately reflect the long-term vegetation trends. The results provide a theoretical basis and reference for the sustainable development of the natural environment and a response to vegetation change under the background of climate change in the study area. Numéro de notice : A2020-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9040282 Date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.3390/ijgi9040282 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95022
in ISPRS International journal of geo-information > vol 9 n° 4 (April 2020) . - 17 p.[article]