Détail de l'auteur
Auteur Shuhui Gong |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)
[article]
Titre : Geographical and temporal huff model calibration using taxi trajectory data Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; Yang Yue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 485 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attractivité (aménagement)
[Termes IGN] étalonnage de modèle
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression géographiquement pondérée
[Termes IGN] Shenzhen
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The Huff model is designed to estimate the probability of shopping centre patronage based on a shopping centre’s attractiveness and the cost of a customer’s travel. In this paper, we attempt to discover some general shopping trends by calibrating the Huff model in Shenzhen, China, and New York, USA, using taxi trajectory GPS data and sharing bikes GPS data. Geographical and Temporal Weighted Regression (GTWR) is used to fit the model, and calibration results are compared with Ordinary Least Squares (OLS) regression, Geographical Weighted Regression (GWR), and Temporal Weighted Regression (TWR). Results show that GTWR gives the highest performance due to significant geographical and temporal variation in the Huff model parameters of attractiveness and travel cost. To explain the geographical variation, we use residential sales’ and rental prices in Shenzhen and New York as a proxy for customers’ wealth in each region. Pearson product-moment correlation results show a medium relationship between localised sales’ and rental prices and the Huff model parameter of attractiveness: that is, customer wealth explains geographic sensitivity to shopping area attractiveness. To explain temporal variation, we use census data in both Shenzhen and New York to provide job profile distributions for each region as a proxy to estimate customers’ spare leisure time. Regression results demonstrate that there is a significant linear relationship between the length of spare time and the parameter of shopping area attractiveness. In particular, we demonstrate that wealthy customers with less spare time are more sensitive to a shopping centre’s attractiveness. We also discover customers’ sensitivities to travel distance are related to their travel mode. In particular, people riding bikes to shopping areas care much more about trip distance compared with people who take taxi. Finally, results show a divergence in behaviours between customers in New York and Shenzhen at weekends. While customers in New York prefer to shop more locally at weekends, customers in Shenzhen care less about trip distance. We provide the GTWR calibration of the Huff model as our theoretical contribution. GTWR extends the Huff model to two dimensions (time and space), so as to analyse the differences of residents’ travel behaviours in different time and locations. We also provide the discoveries of factors affecting urban travel behaviours (wealth and employment) as practical contributions that may help optimise urban transportation design. In particular, the sensitivity of residents to the attraction of shopping areas has a significant positive linear relationship with the housing price and a significant negative linear relationship with the residents’ length of spare time. Numéro de notice : A2021-973 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10707-019-00390-x Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1007/s10707-019-00390-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100392
in Geoinformatica > vol 25 n° 3 (July 2021) . - pp 485 - 512[article]Extracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : Extracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1210 - 1234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] comportement
[Termes IGN] données GPS
[Termes IGN] données spatiotemporelles
[Termes IGN] durée de trajet
[Termes IGN] inférence statistique
[Termes IGN] longueur de trajet
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] origine - destination
[Termes IGN] point d'intérêt
[Termes IGN] population urbaine
[Termes IGN] questionnaire
[Termes IGN] taxi
[Termes IGN] voyageRésumé : (auteur) Global positioning system (GPS) data generated from taxi trips is a valuable source of information that offers an insight into travel behaviours of urban populations with high spatio-temporal resolution. However, in its raw form, GPS taxi data does not offer information on the purpose (or intended activity) of travel. In this context, to enhance the utility of taxi GPS data sets, we propose a two-layer framework to identify the related activities of each taxi trip automatically and estimate the return trips and successive activities after the trip, by using geographic point-of-interest (POI) data and a combination of spatio-temporal clustering, Bayesian inference and Monte Carlo simulation. Two million taxi trips in New York, the United States of America, and ten million taxi trips in Shenzhen, China, are used as inputs for the two-layer framework. To validate each layer of the framework, we collect 6,003 trip diaries in New York and 712 questionnaire surveys in Shenzhen. The results show that the first layer of the framework performs better than comparable methods published in the literature, while the second layer has high accuracy when inferring return trips. Numéro de notice : A2020-270 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1641715 Date de publication en ligne : 19/07/2019 En ligne : https://doi.org/10.1080/13658816.2019.1641715 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95042
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1210 - 1234[article]