Détail de l'auteur
Auteur Yonghua Sun |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images / Jing Zeng in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)
[article]
Titre : A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images Type de document : Article/Communication Auteurs : Jing Zeng, Auteur ; Yonghua Sun, Auteur ; Peirun Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par arbre de décision
[Termes IGN] classification semi-dirigée
[Termes IGN] image Landsat-8
[Termes IGN] indice de végétation
[Termes IGN] Kiangsou (Chine)
[Termes IGN] marais salant
[Termes IGN] phénologie
[Termes IGN] réflectance de surfaceRésumé : (auteur) Coastal salt marshes, as a globally significant intertidal ecosystem, are highly productive but extremely fragile and unstable. Mapping coastal salt marshes accurately is the basis of assessing global climate change, biological invasion, and coastal erosion. Using Landsat 8 images, this paper integrated the advantages of pixel- and phenology-based algorithms and vegetation indices in vegetation classification. An enhanced phenology-based vegetation index classification (PVC) algorithm is proposed to obtain the spatial distribution and community composition of coastal salt marshes in Bohai Sea of China accurately and quickly. The results showed that (1) the coastal redness vegetation index (CRVI) can be used to extract Suaeda spp. effectively, and the phenology-based vegetation indices (PVIs) dataset can alleviate the spatial variability of phenology in coastal salt marshes; (2) the crucial phenological periods for identifying coastal salt marshes are May, October, and November, and the optimal PVIs are consistent with the phenological characteristics of salt marshes; (3) during the year 2018–2019, the overall accuracy (OA) of the PVC algorithm in Yancheng coast of Jiangsu Province and Bohai Sea coast reached 80.49 % and 90.8 % respectively. A total of 14,763.39 ha of salt marshes were found in the coastal area of Bohai Sea, and Shandong Province had the most abundant types of salt marshes and the largest area; (4) the classification model based on the PVC algorithm is stable and scalable in 2016–2017 and 2020–2021, with the OA of 89.19% and 86.67% respectively. These results demonstrate the value of the PVC algorithm in vegetation classification, and this study can provide a referable semi-automatic vegetation classification method for other coastal areas. Numéro de notice : A2022-551 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102776 Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101154
in International journal of applied Earth observation and geoinformation > vol 110 (June 2022) . - n° 102776[article]A water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
[article]
Titre : A water identification method basing on grayscale Landsat 8 OLI images Type de document : Article/Communication Auteurs : Zhitian Deng, Auteur ; Yonghua Sun, Auteur ; Ke Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 700 - 710 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] détection de contours
[Termes IGN] eau de surface
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] Kappa de Cohen
[Termes IGN] niveau de gris (image)
[Termes IGN] Normalized Difference Water Index
[Termes IGN] ressources en eauRésumé : (auteur) Accurate identification of water boundaries is of great significance to water resources surveys. Most water indexes have been designed for different districts and cannot be universally utilized in different regions and, in addition, they rely on atmospheric correction. A new water index, None-Radiation-Calibration Water Index (NRCWI), was constructed by Landsat OLI Band 3 (Green), Band 5 (NIR), and Band 6 (SWIR1), and was compared to the previous method, Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Automated Water Extraction Index (AWEI). We evaluated the accuracy of four water index methods for classifying water in 30-m resolution Landsat 8 OLI imagery from the Bohai Sea Rim in China, which takes in a broad assortment of features including sea and coastline, lakes, rivers, man-made water features, and mountains (shadow water). The following outcomes were obtained: 1. The overall accuracy of NRCWI was 95.23%, which is higher than NDWI, MNDWI, AWEI; 2. The leakage error of NRCWI was 5.48%, the misclassification error was 6.15%, and it implies that the error of NRCWI was effected decrease; 3. NRCWI had the highest kappa coefficient in lakes, rivers, man-made waters, mountains, and other ground features, which means that the method can reach a high accuracy in case 2 water which is principally situated in the near shore, estuary and so on; 4. In the applicability study, the kappa values of NRCWI were 89.99% (OLI), 87.36% (ETM+), 87.33% (TM), and 81.20% (Sentinel-2 MSI). Overall, the NRCWI method performed the best, with the highest accuracy and the lowest leakage error, which may be useful in OLI, ETM+, and TM imagery. Numéro de notice : A2020-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552324 Date de publication en ligne : 14/06/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552324 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95056
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 700 - 710[article]