Détail de l'auteur
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Sébastien Bosch, Auteur ; Pascal Favé, Auteur ; Roland Gachet, Auteur ; Alain Orsoni , Auteur ; Thomas Tilak , Auteur ; Alexis Barot, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 15 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'images
[Termes IGN] compensation par bloc
[Termes IGN] données localisées de référence
[Termes IGN] formatage
[Termes IGN] image à très haute résolution
[Termes IGN] image multi sources
[Termes IGN] image satellite
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] image SPOT-HRS
[Termes IGN] informatique en nuage
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] point d'appui
[Termes IGN] spatiotriangulationRésumé : (auteur) High location accuracy is a major requirement for satellite image users. Target performance is usually achieved thanks to either specific on-board satellite equipment or an auxiliary registration reference dataset. Both methods may be expensive and with certain limitations in terms of performance. The Institut national de l’information géographique et forestière (IGN) and Airbus Defence and Space (ADS) have worked together for almost 20 years, to build reference data for improving image location using multi-satellite observations. The first geometric foundation created has mainly used SPOT 5 High Resolution Stereoscopic (HRS) imagery, ancillary Ground Control Points (GCP) and Very High Resolution (VHR) imagery, providing a homogenous location accuracy of 10m CE90 almost all over the world in 2010. Space Reference Points (SRP) is a new worldwide 3D GCP database, built from a plethoric SPOT 6/7 multi-view archive, largely automatically processed, with cloud-based technologies. SRP aims at providing a systematic and reliable solution for image location (Unmanned Aerial Vehicle, VHR satellite imagery, High Altitudes Pseudo-Satellite…) and similar topics thanks to a high-density point distribution with a 3m CE90 accuracy. This paper describes the principle of SRP generation and presents the first validation results. A SPOT 6/7 smart image selection is performed to keep only relevant images for SRP purpose. The location of these SPOT 6/7 images is refined thanks to a spatiotriangulation on the worldwide geometric foundation, itself improved where needed. Points making up the future SRP database are afterward extracted thanks to classical feature detection algorithms and with respect to the expected density. Different filtering methods are applied to keep the best candidates. The last step of the processing chain is the formatting of the data to the delivery format, including metadata. An example of validation of SRP concept and specification on two tests sites (Spain and China) is then given. As a conclusion, the on-going production is shortly presented. Numéro de notice : A2020-474 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-15-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95613
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 15 - 23[article]Very high resolution land cover mapping of urban areas at global scale with convolutional neural network / Thomas Tilak (2020)
Titre : Very high resolution land cover mapping of urban areas at global scale with convolutional neural network Type de document : Article/Communication Auteurs : Thomas Tilak , Auteur ; Arnaud Braun , Auteur ; David Chandler , Auteur ; Nicolas David , Auteur ; Sylvain Galopin , Auteur ; Amélie Lombard, Auteur ; Camille Parisel , Auteur ; Camille Parisel , Auteur ; Matthieu Porte , Auteur ; Marjorie Robert, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Autre Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : 8 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] BD Alti
[Termes IGN] carte d'occupation du sol
[Termes IGN] chaîne de production
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation croisée maximale
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Gironde (33)
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multibande
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation sémantique
[Termes IGN] vectorisation
[Termes IGN] zone d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and limited noisy labeled data. The objective is to make a segmentation map of a large area (a french department) with the following classes: asphalt, bare soil, building, grassland, mineral material (permeable artificialized areas), forest and water from 20cm aerial images and Digital Height Model. We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation to get a complete ground truth in each class. A comparative study of different encoder-decoder architectures (U-Net, U-Net with Resnet encoders, Deeplab v3+) is presented with different loss functions. The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined before vectorization. Numéro de notice : C2020-038 Affiliation des auteurs : IGN+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-201-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-201-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95079