Détail de l'auteur
|
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : National forest database production with deep learning at IGN France Type de document : Chapitre/Contribution Auteurs : Matthieu Porte , Auteur Editeur : Dublin : European Spatial Data Research EuroSDR Année de publication : 2021 Collection : EuroSDR annual report num. 2020 Importance : pp 8 - 10 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées IGN
[Termes IGN] BD forêtNuméro de notice : H2020-006 Affiliation des auteurs : IGN (2020- ) Thématique : FORET/GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Chapître / contribution DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100482 Documents numériques
peut être téléchargé
National forest database production ... - pdf éditeurAdobe Acrobat PDF Very high resolution land cover mapping of urban areas at global scale with convolutional neural network / Thomas Tilak (2020)
Titre : Very high resolution land cover mapping of urban areas at global scale with convolutional neural network Type de document : Article/Communication Auteurs : Thomas Tilak , Auteur ; Arnaud Braun , Auteur ; David Chandler , Auteur ; Nicolas David , Auteur ; Sylvain Galopin , Auteur ; Amélie Lombard, Auteur ; Camille Parisel , Auteur ; Camille Parisel , Auteur ; Matthieu Porte , Auteur ; Marjorie Robert, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2020 Autre Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B3 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 3, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Archives Commission 3 Importance : 8 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] BD Alti
[Termes IGN] carte d'occupation du sol
[Termes IGN] chaîne de production
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation croisée maximale
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Gironde (33)
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multibande
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation sémantique
[Termes IGN] vectorisation
[Termes IGN] zone d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and limited noisy labeled data. The objective is to make a segmentation map of a large area (a french department) with the following classes: asphalt, bare soil, building, grassland, mineral material (permeable artificialized areas), forest and water from 20cm aerial images and Digital Height Model. We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation to get a complete ground truth in each class. A comparative study of different encoder-decoder architectures (U-Net, U-Net with Resnet encoders, Deeplab v3+) is presented with different loss functions. The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined before vectorization. Numéro de notice : C2020-038 Affiliation des auteurs : IGN+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B3-2020-201-2020 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-201-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95079