Détail de l'auteur
Auteur Mario Julian Chaubell |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improved SMAP dual-channel algorithm for the retrieval of soil moisture / Mario Julian Chaubell in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
[article]
Titre : Improved SMAP dual-channel algorithm for the retrieval of soil moisture Type de document : Article/Communication Auteurs : Mario Julian Chaubell, Auteur ; Simon H. Yueh, Auteur ; R. Scott Dunbar, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3894 - 3905 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] humidité du sol
[Termes IGN] mission SMAP
[Termes IGN] polarisation
[Termes IGN] radiomètre
[Termes IGN] rugosité
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) The soil moisture active passive (SMAP) mission was designed to acquire L-band radiometer measurements for the estimation of soil moisture (SM) with an average ubRMSD of not more than 0.04 m3/m3 volumetric accuracy in the top 5 cm for vegetation with a water content of less than 5 kg/ m2 . Single-channel algorithm (SCA) and dual-channel algorithm (DCA) are implemented for the processing of SMAP radiometer data. The SCA using the vertically polarized brightness temperature (SCA-V) has been providing satisfactory SM retrievals. However, the DCA using prelaunch design and algorithm parameters for vertical and horizontal polarization data has a marginal performance. In this article, we show that with the updates of the roughness parameter h and the polarization mixing parameters Q , a modified DCA (MDCA) can achieve improved accuracy over DCA; it also allows for the retrieval of vegetation optical depth (VOD or τ ). The retrieval performance of MDCA is assessed and compared with SCA-V and DCA using four years (April 1, 2015 to March 31, 2019) of in situ data from core validation sites (CVSs) and sparse networks. The assessment shows that SCA-V still outperforms all the implemented algorithms. Numéro de notice : A2020-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2959239 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2959239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95104
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 3894 - 3905[article]