Détail de l'auteur
Auteur Danbing He |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance / Bing Tu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
[article]
Titre : Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance Type de document : Article/Communication Auteurs : Bing Tu, Auteur ; Chengle Zhou, Auteur ; Danbing He, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4116 - 4131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] erreur d'échantillon
[Termes IGN] image hyperspectrale
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] superpixelRésumé : (auteur) Classification is an important technique for remotely sensed hyperspectral image (HSI) exploitation. Often, the presence of wrong (noisy) labels presents a drawback for accurate supervised classification. In this article, we introduce a new framework for noisy label detection that combines a superpixel-to-pixel weighting distance (SPWD) and density peak clustering. The proposed method is able to accurately detect and remove noisy labels in the training set before HSI classification. It considers two weak assumptions when exploiting the spectral–spatial information contained in the HSI: 1) all the pixels in a superpixel belong to the same class and 2) close pixels in spectral space have the same label. The proposed method consists of the following steps. First, a superpixel segmentation step is used to obtain self-adaptive spatial information for each training sample. Then, a metric is utilized to measure the spectral distance information between each superpixel and pixel. Meanwhile, in order to overcome the first weak assumption, we use K nearest neighbors to obtain the closest neighborhoods of pixels around each superpixel, and a Gaussian weight is employed to mitigate the second weak assumption by adapting the original distance information. Next, the noisy labels in the original training set are removed by a density threshold-based decision function. Finally, the support vector machine (SVM) classifier is employed to evaluate the effectiveness of the proposed SPWD detection method in terms of classification accuracy. Experiments performed on several real HSI data sets demonstrate that the method can effectively improve the performance of classifiers trained with noisy training sets in terms of classification accuracy. Numéro de notice : A2020-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961141 Date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961141 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95105
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4116 - 4131[article]