Détail de l'auteur
Auteur Wafa E.A. Abaker |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis / Mathias Mayer in Forest ecology and management, Vol 466 (15 June 2020)
[article]
Titre : Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis Type de document : Article/Communication Auteurs : Mathias Mayer, Auteur ; Cindy E. Prescott, Auteur ; Wafa E.A. Abaker, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 25 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] afforestation
[Termes IGN] azote
[Termes IGN] biomasse forestière
[Termes IGN] changement d'occupation du sol
[Termes IGN] déchet organique
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] écosystème forestier
[Termes IGN] forêt primaire
[Termes IGN] forêt secondaire
[Termes IGN] gestion forestière
[Termes IGN] peuplement mélangé
[Termes IGN] teneur en carbone
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Almost half of the total organic carbon (C) in terrestrial ecosystems is stored in forest soils. By altering rates of input or release of C from soils, forest management activities can influence soil C stocks in forests. In this review, we synthesize current evidence regarding the influences of 13 common forest management practices on forest soil C stocks. Afforestation of former croplands generally increases soil C stocks, whereas on former grasslands and peatlands, soil C stocks are unchanged or even reduced following afforestation. The conversion of primary forests to secondary forests generally reduces soil C stocks, particularly if the land is converted to an agricultural land-use prior to reforestation. Harvesting, particularly clear-cut harvesting, generally results in a reduction in soil C stocks, particularly in the forest floor and upper mineral soil. Removal of residues by harvesting whole-trees and stumps negatively affects soil C stocks. Soil disturbance from site preparation decreases soil C stocks, particularly in the organic top soil, however improved growth of tree seedlings may outweigh soil C losses over a rotation. Nitrogen (N) addition has an overall positive effect on soil C stocks across a wide range of forest ecosystems. Likewise, higher stocks and faster accumulation of soil C occur under tree species with N-fixing associates. Stocks and accumulation rates of soil C also differ under different tree species, with coniferous species accumulating more C in the forest floor and broadleaved species tending to store more C in the mineral soil. There is some evidence that increased tree species diversity could positively affect soil C stocks in temperate and subtropical forests, but tree species identity, particularly N-fixing species, seems to have a stronger impact on soil C stocks than tree species diversity. Management of stand density and thinning have small effects on forest soil C stocks. In forests with high populations of ungulate herbivores, reduction in herbivory levels can increase soil C stocks. Removal of plant biomass for fodder and fuel is related to a reduction in the soil C stocks. Fire management practices such as prescribed burning reduce soil C stocks, but less so than wildfires which are more intense. For each practice, we identify existing gaps in knowledge and suggest research to address the gaps. Numéro de notice : A2020-288 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2020.118127 Date de publication en ligne : 08/04/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118127 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95113
in Forest ecology and management > Vol 466 (15 June 2020) . - 25 p.[article]