Détail de l'auteur
Auteur Arundhati Misra |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data Type de document : Article/Communication Auteurs : Dipanwita Haldar, Auteur ; Viral Dave, Auteur ; Arundhati Misra, Auteur ; Bimal Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 364 - 375 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] cultures
[Termes IGN] Gossypium (genre)
[Termes IGN] image Risat-1
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] polarisation
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Periodic crop condition monitoring is of prime importance in cotton belt of western India for water stress management. In this article, vegetation water content (VWC) is assessed using Radar Vegetation Index (RVI) derived from the RISAT-1 data during July to September, vegetative to first picking phase, for utilizing its potential for large area cotton condition assessment. The RVI estimation from dual-polarized data has been demonstrated for regional applications. Prediction models of VWC for cotton crop using RVI and in situ ground measurements depicts significant relationship, with R2 varying from 0.5 to 0.6 and RMSE of 0.3–0.7 kg m−2. High correlation exists between RVI with crop age and crop biomass with R2 varying from 0.55 to 0.7, this proves useful for sowing date prediction. The results showed good validation (R2 = 0.8) for operational applications. The estimated VWC was found with 30–35% error above 4 kg m−2 biomasses as compared to 20–25% in lower ranges. Numéro de notice : A2020-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1516249 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1516249 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95118
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 364 - 375[article]