Détail de l'auteur
Auteur Achraf El Ayedi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring the potential of deep learning segmentation for mountain roads generalisation / Azelle Courtial in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
[article]
Titre : Exploring the potential of deep learning segmentation for mountain roads generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Achraf El Ayedi, Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 338 ; 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] 1:25.000
[Termes IGN] 1:250.000
[Termes IGN] Alpes (France)
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données routières
[Termes IGN] données vectorielles
[Termes IGN] généralisation automatique de données
[Termes IGN] montagne
[Termes IGN] route
[Termes IGN] segmentation
[Termes IGN] symbole graphique
[Termes IGN] virage
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Among cartographic generalisation problems, the generalisation of sinuous bends in mountain roads has always been a popular one due to its difficulty. Recent research showed the potential of deep learning techniques to overcome some remaining research problems regarding the automation of cartographic generalisation. This paper explores this potential on the popular mountain road generalisation problem, which requires smoothing the road, enlarging the bend summits, and schematising the bend series by removing some of the bends. We modelled the mountain road generalisation as a deep learning problem by generating an image from input vector road data, and tried to generate it as an output of the model a new image of the generalised roads. Similarly to previous studies on building generalisation, we used a U-Net architecture to generate the generalised image from the ungeneralised image. The deep learning model was trained and evaluated on a dataset composed of roads in the Alps extracted from IGN (the French national mapping agency) maps at 1:250,000 (output) and 1:25,000 (input) scale. The results are encouraging as the output image looks like a generalised version of the roads and the accuracy of pixel segmentation is around 65%. The model learns how to smooth the output roads, and that it needs to displace and enlarge symbols but does not always correctly achieve these operations. This article shows the ability of deep learning to understand and manage the geographic information for generalisation, but also highlights challenges to come. Numéro de notice : A2020-295 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9050338 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.3390/ijgi9050338 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95131
in ISPRS International journal of geo-information > vol 9 n° 5 (May 2020) . - n° 338 ; 21 p.[article]