Détail de l'auteur
Auteur Ziqi Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Computational improvements to multi-scale geographically weighted regression / Ziqi Li in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
[article]
Titre : Computational improvements to multi-scale geographically weighted regression Type de document : Article/Communication Auteurs : Ziqi Li, Auteur ; A. Stewart Fotheringham, Auteur Année de publication : 2020 Article en page(s) : pp 1378 - 1397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse géovisuelle
[Termes IGN] analyse multiéchelle
[Termes IGN] implémentation (informatique)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] traitement parallèleRésumé : (auteur) Geographically Weighted Regression (GWR) has been broadly used in various fields to model spatially non-stationary relationships. Multi-scale Geographically Weighted Regression (MGWR) is a recent advancement to the classic GWR model. MGWR is superior in capturing multi-scale processes over the traditional single-scale GWR model by using different bandwidths for each covariate. However, the multiscale property of MGWR brings additional computation costs. The calibration process of MGWR involves iterative back-fitting under the additive model (AM) framework. Currently, MGWR can only be applied on small datasets within a tolerable time and is prohibitively time-consuming to run with moderately large datasets (greater than 5,000 observations). In this paper, we propose a parallel implementation that has crucial computational improvements to the MGWR calibration. This improved computational method reduces both memory footprint and runtime to allow MGWR modelling to be applied to moderate-to-large datasets (up to 100,000 observations). These improvements are integrated into the mgwr python package and the MGWR 2.0 software, both of which are freely available to download. Numéro de notice : A2020-305 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720692 Date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720692 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95147
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1378 - 1397[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 RAB Revue Centre de documentation En réserve L003 Disponible