Détail de l'auteur
Auteur Jose Morales |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax / Jose Morales in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
[article]
Titre : Predictive land value modelling in Guatemala City using a geostatistical approach and Space Syntax Type de document : Article/Communication Auteurs : Jose Morales, Auteur ; Alfred Stein, Auteur ; Johannes Flacke, Auteur ; Jaap Zevenbergen, Auteur Année de publication : 2020 Article en page(s) : pp 1451 - 1474 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de la valeur
[Termes IGN] analyse syntaxique
[Termes IGN] cartographie statistique
[Termes IGN] estimation quantitative
[Termes IGN] évaluation foncière
[Termes IGN] géostatistique
[Termes IGN] Guatemala
[Termes IGN] krigeage
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle de simulation
[Termes IGN] régression
[Termes IGN] système d'information foncièreRésumé : (auteur) Spatial information of land values is fundamental for planners and policy makers. Individual appraisals are costly, explaining the need for predictive modelling. Recent work has investigated using Space Syntax to analyse urban access and explain land values. However, the spatial dependence of urban land markets has not been addressed in such studies. Further, the selection of meaningful variables is commonly conducted under non-spatialized modelling conditions. The objective of this paper is to construct a land value map using a geostatistical approach using Space Syntax and a spatialized variable selection. The methodology is applied in Guatemala City. We used an existing dataset of residential land value appraisals and accessibility metrics. Regression-kriging was used to conduct variable selection and derive a model for spatial prediction. The prediction accuracy is compared with a multivariate regression. The results show that a spatialized variable selection yields a more parsimonious model with higher prediction accuracy. New insights were found on how Space Syntax explains land value variability when also modelling the spatial dependence. Space Syntax can contribute with relevant spatialized information for predictive land value modelling purposes. Finally, the spatial modelling framework facilitates the production of spatial information of land values that is relevant for planning practice. Numéro de notice : A2020-306 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725014 Date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95148
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1451 - 1474[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 RAB Revue Centre de documentation En réserve L003 Disponible