Détail de l'auteur
Auteur Yaqian Zhai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata / Yaqian Zhai in International journal of geographical information science IJGIS, vol 34 n° 7 (July 2020)
[article]
Titre : Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata Type de document : Article/Communication Auteurs : Yaqian Zhai, Auteur ; Yao Yao, Auteur ; Qingfeng Guan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1475 - 1499 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aide à la décision
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] milieu urbain
[Termes IGN] morphologie
[Termes IGN] parcelle cadastrale
[Termes IGN] petite échelle
[Termes IGN] planification urbaine
[Termes IGN] précision de la classification
[Termes IGN] Shenzhen
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Vector-based cellular automata (VCA) models have been applied in land use change simulations at fine scales. However, the neighborhood effects of the driving factors are rarely considered in the exploration of the transition suitability of cells, leading to lower simulation accuracy. This study proposes a convolutional neural network (CNN)-VCA model that adopts the CNN to extract the high-level features of the driving factors within a neighborhood of an irregularly shaped cell and discover the relationships between multiple land use changes and driving factors at the neighborhood level. The proposed model was applied to simulate urban land use changes in Shenzhen, China. Compared with several VCA models using other machine learning methods, the proposed CNN-VCA model obtained the highest simulation accuracy (figure-of-merit = 0.361). The results indicated that the CNN-VCA model can effectively uncover the neighborhood effects of multiple driving factors on the developmental potential of land parcels and obtain more details on the morphological characteristics of land parcels. Moreover, the land use patterns of 2020 and 2025 under an ecological control strategy were simulated to provide decision support for urban planning. Numéro de notice : A2020-307 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1711915 Date de publication en ligne : 14/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1711915 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95149
in International journal of geographical information science IJGIS > vol 34 n° 7 (July 2020) . - pp 1475 - 1499[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020071 RAB Revue Centre de documentation En réserve L003 Disponible