Détail de l'auteur
Auteur Saro Lee |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea / Sunmin Lee in Geocarto international, vol 35 n° 15 ([01/11/2020])
[article]
Titre : Landslide susceptibility mapping using Naïve Bayes and Bayesian network models in Umyeonsan, Korea Type de document : Article/Communication Auteurs : Sunmin Lee, Auteur ; Moung-Jin Lee, Auteur ; Hyung-Sup Jung, Auteur ; Saro Lee, Auteur Année de publication : 2020 Article en page(s) : pp 1665 - 1679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] carte topographique
[Termes IGN] cartographie des risques
[Termes IGN] catastrophe naturelle
[Termes IGN] Corée du sud
[Termes IGN] effondrement de terrain
[Termes IGN] modèle stochastique
[Termes IGN] réseau bayesien
[Termes IGN] système d'information géographique
[Termes IGN] zone urbaineRésumé : (auteur) In recent years, machine learning techniques have been increasingly applied to the assessment of various natural disasters, including landslides and floods. Machine learning techniques can be used to make predictions based on the relationships among events and their influencing factors. In this study, a machine learning approaches were applied based on landslide location data in a geographic information system environment. Topographic maps were used to determine the topographical factors. Additional soil and forest parameters were examined using information obtained from soil and forest maps. A total of 17 factors affecting landslide occurrence were selected and a spatial database was constructed. Naïve Bayes and Bayesian network models were applied to predict landslides based on selected risk factors. The two models showed accuracies of 78.3 and 79.8%, respectively. The results of this study provide a useful foundation for effective strategies to prevent and manage landslides in urban areas. Numéro de notice : A2020-658 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1585482 Date de publication en ligne : 16/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1585482 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96130
in Geocarto international > vol 35 n° 15 [01/11/2020] . - pp 1665 - 1679[article]Machine learning techniques applied to geoscience information system and remote sensing / Saro Lee (2019)
Titre : Machine learning techniques applied to geoscience information system and remote sensing Type de document : Monographie Auteurs : Saro Lee, Éditeur scientifique ; Hyung-Sup Jung, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 438 p. ISBN/ISSN/EAN : ISBN 978-3-03921-215-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] géosciences
[Termes IGN] réseau neuronal convolutif
[Termes IGN] système d'information géographique
[Termes IGN] télédétection
[Termes IGN] traitement de données localiséesRésumé : (éditeur) As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing. Numéro de notice : 25831 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Recueil / ouvrage collectif En ligne : https://www.mdpi.com/books/pdfview/book/1533 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95158