Détail de l'auteur
Auteur Lanfa Liu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur Année de publication : 2023 Projets : 1-Pas de projet / Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]A data fusion-based framework to integrate multi-source VGI in an authoritative land use database / Lanfa Liu in International Journal of Digital Earth, vol 14 n° 4 (April 2021)
[article]
Titre : A data fusion-based framework to integrate multi-source VGI in an authoritative land use database Type de document : Article/Communication Auteurs : Lanfa Liu, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Laurence Jolivet , Auteur ; Arnaud Le Bris , Auteur ; Linda M. See, Auteur Année de publication : 2021 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 480 - 509 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données d'occupation du sol
[Termes IGN] base de données localisées de référence
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] fusion de données
[Termes IGN] intégration de données
[Termes IGN] mise à jour de base de données
[Termes IGN] OCS GE
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) Updating an authoritative Land Use and Land Cover (LULC) database requires many resources. Volunteered geographic information (VGI) involves citizens in the collection of data about their spatial environment. There is a growing interest in using existing VGI to update authoritative databases. This paper presents a framework aimed at integrating multi-source VGI based on a data fusion technique, in order to update an authoritative land use database. Each VGI data source is considered to be an independent source of information, which is fused together using Dempster-Shafer Theory (DST). The framework is tested in the updating of the authoritative land use data produced by the French National Mapping Agency. Four data sets were collected from several in-situ and remote campaigns run between 2018 and 2020 by contributors with varying profiles. The data fusion approach achieved an overall accuracy of 85.6% for the 144 features having at least two contributions when the confidence threshold was set to 0.05. Despite the heterogeneity and limited amount of VGI used, the results are promising, with 99% of the LU polygons updated or enriched. These results show the potential of using multi-source VGI to update or enrich authoritative LU data and potentially LULC data more generally. Numéro de notice : A2021-069 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/17538947.2020.1842524 Date de publication en ligne : 05/11/2020 En ligne : https://hal.science/hal-03046640v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96522
in International Journal of Digital Earth > vol 14 n° 4 (April 2021) . - pp 480 - 509[article]Use of automated change detection and VGI sources for identifying and validating urban land use change / Ana-Maria Olteanu-Raimond in Remote sensing, vol 12 n° 7 (April 2020)
[article]
Titre : Use of automated change detection and VGI sources for identifying and validating urban land use change Type de document : Article/Communication Auteurs : Ana-Maria Olteanu-Raimond , Auteur ; L. See, Auteur ; M. Schultz, Auteur ; Giles M. Foody, Auteur ; M. Riffler, Auteur ; T. Gasber, Auteur ; Laurence Jolivet , Auteur ; Arnaud Le Bris , Auteur ; Yann Méneroux , Auteur ; Lanfa Liu, Auteur ; Marc Poupée , Auteur ; Marie Gombert, Auteur Année de publication : 2020 Projets : Landsense / Raimond, Ana-Maria Article en page(s) : n° 1186 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] carte d'utilisation du sol
[Termes IGN] cartographie collaborative
[Termes IGN] changement d'utilisation du sol
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données localisées des bénévoles
[Termes IGN] estimation de précision
[Termes IGN] science citoyenne
[Termes IGN] zone urbaineRésumé : (Auteur) Land use and land cover (LULC) mapping is often undertaken by national mapping agencies, where these LULC products are used for different types of monitoring and reporting applications. Updating of LULC databases is often done on a multi-year cycle due to the high costs involved, so changes are only detected when mapping exercises are repeated. Consequently, the information on LULC can quickly become outdated and hence may be incorrect in some areas. In the current era of big data and Earth observation, change detection algorithms can be used to identify changes in urban areas, which can then be used to automatically update LULC databases on a more continuous basis. However, the change detection algorithm must be validated before the changes can be committed to authoritative databases such as those produced by national mapping agencies. This paper outlines a change detection algorithm for identifying construction sites, which represent ongoing changes in LU, developed in the framework of the LandSense project. We then use volunteered geographic information (VGI) captured through the use of mapathons from a range of different groups of contributors to validate these changes. In total, 105 contributors were involved in the mapathons, producing a total of 2778 observations. The 105 contributors were grouped according to six different user-profiles and were analyzed to understand the impact of the experience of the users on the accuracy assessment. Overall, the results show that the change detection algorithm is able to identify changes in residential land use to an adequate level of accuracy (85%) but changes in infrastructure and industrial sites had lower accuracies (57% and 75 %, respectively), requiring further improvements. In terms of user profiles, the experts in LULC from local authorities, researchers in LULC at the French national mapping agency (IGN), and first-year students with a basic knowledge of geographic information systems had the highest overall accuracies (86.2%, 93.2%, and 85.2%, respectively). Differences in how the users approach the task also emerged, e.g., local authorities used knowledge and context to try to identify types of change while those with no knowledge of LULC (i.e., normal citizens) were quicker to choose ‘Unknown’ when the visual interpretation of a class was more difficult. Numéro de notice : A2020-243 Affiliation des auteurs : LASTIG+Ext (2016-2019) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12071186 Date de publication en ligne : 07/04/2020 En ligne : https://doi.org/10.3390/rs12071186 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95217
in Remote sensing > vol 12 n° 7 (April 2020) . - n° 1186[article]