Détail de l'auteur
Auteur Soyoun Kim |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting abandoned farmland using harmonic analysis and machine learning / Heeyeun Yoon in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
[article]
Titre : Detecting abandoned farmland using harmonic analysis and machine learning Type de document : Article/Communication Auteurs : Heeyeun Yoon, Auteur ; Soyoun Kim, Auteur Année de publication : 2020 Article en page(s) : pp 201 - 212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse harmonique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Corée du sud
[Termes IGN] gestion des ressources
[Termes IGN] inventaire
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] phénologie
[Termes IGN] production agricole
[Termes IGN] Soil Adjusted Vegetation Index
[Termes IGN] surface cultivéeRésumé : (auteur) It is critical to inventory abandoned farmland soon after it is generated, to better manage agricultural resources and to prevent negative consequences that would otherwise follow. This study aims to distinguish abandoned farmlands from active croplands—rice paddy and agricultural fields—by discerning the phenological trajectories over a short-term period of three years (Jan. 2016 to Dec. 2018) in Gwanyang City in South Korea. For Support Vector Machine (SVM) classification, we fully utilized parameters derived from harmonic analyses of the three vegetation indices (VIs: NDVI, NDWI, and SAVI) extracted from Sentinel-2A imagery. The harmonic analyses proved that higher-order sinusoid components produced better fitting to explain the trajectory of the VIs—the maximum adjusted was 95.23%—and the multiple VIs diversified the attributes for the classifications. Consequently, the higher-order harmonic components and the additional VIs increased the accuracy when used in SVM classification. The best performing classification was achieved with a composite of harmonic terms derived from the three VIs, yielding overall accuracy of 90.72%, Kappa index of 0.858, and user’s accuracy for abandoned farmland of 93.40%. The proposed method here would greatly improve the process of detecting abandoned farmland, despite a relatively short observation period, and enable a rapid response to the occurrence of abandonment. Numéro de notice : A2020-356 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.021 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95243
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 201 - 212[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt