Détail de l'auteur
Auteur Behrouz Far |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]Behavior-based location recommendation on location-based social networks / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 24 n° 3 (July 2020)
[article]
Titre : Behavior-based location recommendation on location-based social networks Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2020 Article en page(s) : pp 477 – 504 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] interface web
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] réseau social géodépendant
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods on location-based social networks (LBSN) discover the locational preference of users along with their spatial movement patterns from users’ check-ins and provide users with recommendations of unvisited places. The growing popularity of LBSNs and abundance of shared location information has made location recommendation an active research area in the recent years. However, the existing methods suffer from one or more deficiencies such as data sparsity, cold-start users, ignoring users’ specific spatial and temporal behaviors, not utilizing the shared behaviors of the users. In this paper, we propose a novel location recommendation method, namely Behavior-based Location Recommendation (BLR). BLR recommends a location to a user based on the users’ repetitive behaviors and behaviors of similar users. Additionally, to better integrate the spatial information, BLR has two spatial components, a user-based spatial component to find the spatial preferences of the user, and a behavior-based spatial component to find locations of interest for different behaviors. Experimental studies on three real-world datasets show that BLR produces better location recommendations and can effectively address data sparsity and cold-start problems. Numéro de notice : A2020-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00360-3 Date de publication en ligne : 25/05/2019 En ligne : https://doi.org/10.1007/s10707-019-00360-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95265
in Geoinformatica > vol 24 n° 3 (July 2020) . - pp 477 – 504[article]