Détail de l'auteur
Auteur Vera Sacristan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Map construction algorithms: a local evaluation through hiking data / David Duran in Geoinformatica, vol 24 n° 3 (July 2020)
[article]
Titre : Map construction algorithms: a local evaluation through hiking data Type de document : Article/Communication Auteurs : David Duran, Auteur ; Vera Sacristan, Auteur ; Rodrigo I. Silveira, Auteur Année de publication : 2020 Article en page(s) : pp 633 – 681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] analyse comparative
[Termes IGN] artefact
[Termes IGN] cartographie automatique
[Termes IGN] conception cartographique
[Termes IGN] randonnée
[Termes IGN] réalité de terrain
[Termes IGN] rédaction cartographique
[Termes IGN] trajet (mobilité)Résumé : (auteur) We study five existing map construction algorithms, designed and tested with urban vehicle data in mind, and apply them to hiking trajectories with different terrain characteristics. Our main goal is to better understand the existing strategies and their limitations, in order to shed new light into the current challenges for map construction algorithms. We carefully analyze the results obtained by each algorithm focusing on the local details of the generated maps. Our analysis includes the characterization of 10 types of common artifacts, which occur in the results of more than one algorithm, and 7 algorithmic-specific artifacts, which are consequences of different algorithmic strategies. This allows us to extract systematic conclusions about the main challenges to fully automatize the construction of maps from trajectory data, to detect the strengths and weaknesses of the potential different strategies, and to suggest possible ways to design higher-quality map construction methods. We consider that this analysis will be of help for designing new and better methods that perform well in wider and more realistic contexts, not only for road map or hiking reconstruction, but also for other types of trajectory data. Numéro de notice : A2020-371 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00386-7 Date de publication en ligne : 26/02/2020 En ligne : https://doi.org/10.1007/s10707-019-00386-7 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95266
in Geoinformatica > vol 24 n° 3 (July 2020) . - pp 633 – 681[article]