Détail de l'auteur
Auteur Guangchun Luo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning evolving user’s behaviors on location-based social networks / Ruizhi Wu in Geoinformatica, vol 24 n° 3 (July 2020)
[article]
Titre : Learning evolving user’s behaviors on location-based social networks Type de document : Article/Communication Auteurs : Ruizhi Wu, Auteur ; Guangchun Luo, Auteur ; Qi jin, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 713 – 743 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] comportement
[Termes IGN] données localisées des bénévoles
[Termes IGN] filtrage d'information
[Termes IGN] géopositionnement
[Termes IGN] interaction homme-milieu
[Termes IGN] modèle dynamique
[Termes IGN] réseau social géodépendant
[Termes IGN] utilisateurRésumé : (auteur) With the popularity of smart phones, users’ activities on location-based social networks (LBSNs) evolve faster than traditional social networks. Existing models focus on modeling users’ long-term preferences, leveraging social collaborative filtering to enhance prediction performance. However, the dynamic mobility mechanism of user’s check-in behaviors on LBSNs is seldom considered. In this paper, we propose a new dynamic model that considers both geo-aware user preferences and the social interaction excitation arising from social connections to learn the dynamic mobility mechanism of user’s behaviors on LBSNs. Geo-aware location features, such as semantic features, latent features and dynamic features, are utilized to characterize the location information and reveal the evolution of the geographical impact of location. These geo-aware location features enable us to exploit user’s personal preferences. Meanwhile, we integrate a user’s social connections and friends’ preferences for modeling social interaction excitations. Finally, we jointly incorporate geo-aware user preference learning and social interaction excitation modeling to create a conditional intensity function for temporal point processes with which to explore the dynamic mobility mechanism of evolving user’s check-in behaviors on LBSNs. Extensive experiments on several real-world check-in datasets confirm that our proposed algorithm performs better than existing state-of-the-art methods. Numéro de notice : A2020-372 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00400-3 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1007/s10707-020-00400-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95267
in Geoinformatica > vol 24 n° 3 (July 2020) . - pp 713 – 743[article]