Détail de l'auteur
Auteur Thibault Catry |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Products and services of the Urban THEIA Scientific Expertise Centre Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Thibault Catry, Auteur ; Rémi Cresson, Auteur ; Nadine Dessay, Auteur ; Laurent Demagistri, Auteur ; Sébastien Gadal, Auteur ; Arnaud Le Bris , Auteur ; Kenji Ose, Auteur ; Benjamin Pillot, Auteur Editeur : Strasbourg : Université de Strasbourg Année de publication : 2022 Conférence : LPS 2022, ESA Living Planet Symposium 22/05/2022 27/05/2022 Bonn Allemagne programme sans actes Note générale : projet AIMCEE (Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains) Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données spatiotemporelles
[Termes IGN] image satelliteRésumé : (auteur) The THEIA data and services centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRA, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA was initiated in 2012 with the objective of increasing the use of space data by the scientific community and the public actors. The first years allowed structuring the national science and user communities, pooling resources to facilitate access to data and processing capacities, federating various previously unrelated initiatives, and disseminating the French achievements nationally and internationally.
The THEIA Land Data and Services Centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRAE, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA has been initiated with the objective of increasing the use of space data by the scientific community and the public actors. The Scientific Expertise Centers (SEC) cluster research groups on various thematic domains. The "Urban” SEC gathers experts in multi-sensor urban remote sensing. Researchers of this group have structured their works around the development of algorithms useful for urban remote sensing using optical and SAR sensors to propose “urban products” at three different spatial scales: (1) the urban footprint, (2) the urban fabrics and (3) the urban objects. The objective of this poster is to present recent (>2019) advances of the URBAN SEC at these three scales. For the first two, the proposed methods are adapted to the geographic context of urban cities (West Cities, South Cities first and North Cities). For each spatial scale, the objective is to propose validated scientific products already available or in the near-term through the THEIA Land Service and Data Infrastructure.
At the macro-scale (urban footprint), an unsupervised automated approach is currently under development at Espace-DEV - Montpellier, and funded by a CNES project (TOSCA DELICIOSA). This method is derived from the FOTO algorithm originally developed to differentiate vegetation textures in HR and VHR satellite images (Couteron et al. 2006, Lang et al., 2019). It has been optimized and packaged into the FOTOTEX Python Open-Source library. The method is very well suited for areas with no or few urban settlement data or with quickly growing informal settlements. No training dataset is required, and the urban footprint can be identified from only one satellite image as long as it is not covered by clouds. For Western Cities where training datasets are available, the Urba-Opt processing chain based on an automatic and object-oriented approach has been deployed on HPC infrastructure and produce annually (since 2018) an urban settlement product which is available through the A2S dissemination infrastructure and on the Urban SEC of Theia land data and service Infrastructure. An ongoing research between LIVE and Espace Dev Labs focused on the interest to use the FOTOTEX result as training data in the Urba-Opt processing chain to propose an updated product of urban settlement for South cities.
At the scales of urban fabrics, products are under research activities The LIVE lab. In the context of an ongoing PhD thesis (ANR TIMES) and Tosca project (CNES 2019-2022) Sentinel-2 single-date images are used to assess two semantic segmentation networks (U-Net) that we combined using feature fusion between a from scratch network and a pre-trained network on ImageNet. Three spectral or textural indices have been added to the both networks in order to improve the classification results. The results showed a performance gain for the fusion methods. The research activities are ongoing in order to test the S1 imagery and temporal series for training in a deep architecture.
The IGN-LaSTIG - Univ. Paris Est has focused on the use of Sentinel-2 and VHR mono-temporal SPOT products to retrieve land cover information related to urban density. First, images undergo a U-net based semantic segmentation at urban object level to retrieve ‘topographic’ classes (buildings, roads, vegetation, …). Generalized information about urban fabrics is then derived out of these land cover maps thanks to another CNN architecture. Both a building density measure and a simplified Urban Atlas like land cover map are calculated. The UMR ESPACE has focused on the machine learning modeling of the evolution of urban territories of Arctic (Yakutsk) and North-Eastern Europe (Baltic States and Kaliningrad) cities since the post-Soviet period at two scales: those of the built-up area with high spatial resolution SPOT 6/7 images, and of the urban structures based on the use of Landsat 5 TM, Landsat 8 OLI, and Sentinel 2 MSI images. Environmental (urban vegetation), economic (agricultural transformation), and morphometric indexes have been developed to characterize the processes of urban restructuring (densification, renovation) and expansion of post-Soviet cities. A comparative analysis of the machine learning algorithms used was done on the South-East Baltic cities to evaluate their performance.
At the scale of urban object (3), a map of building with their functions is proposed by the TETIS laboratory. The study targets the retrieval of buildings footprint using deep convolutional neural networks for semantic segmentation, from Spot-6/7 images (1,5m spacing), on the entire France mainland. A single model has been trained and validated from 1.2k Spot-6/7 scenes and 20M images patches. The LIVE Lab has focused on the detection of urban changes from tri-stereoscopic Pléiades imagery through 2017 to 2020. A processing chain based on a Random Forest classifiers (ImCLASS) has been tested and the impact of the height attribute to detect changes has been evaluated to characterize changes into three thematic classes of changes.Numéro de notice : C2022-016 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Poster nature-HAL : Poster-avec-CL DOI : sans En ligne : https://express.converia.de/frontend/index.php?page_id=22745&additions_conferenc [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100842 Documents numériques
peut être téléchargé
Products and services of the Urban THEIA Scientific Expertise Centre - posterAdobe Acrobat PDF
Titre : Télédétection et modélisation spatiale : Applications à la surveillance et au contrôle des maladies liées aux moustiques Type de document : Monographie Auteurs : Annelise Tran, Éditeur scientifique ; Eric Daudé, Éditeur scientifique ; Thibault Catry, Éditeur scientifique Editeur : Versailles : Quae Année de publication : 2022 Importance : 148 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-2-7592-3629-9 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multicritère
[Termes IGN] cartographie des risques
[Termes IGN] distribution spatiale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-ETM+
[Termes IGN] image multibande
[Termes IGN] image Terra-MODIS
[Termes IGN] maladie parasitaire
[Termes IGN] maladie tropicale
[Termes IGN] modélisation spatiale
[Termes IGN] Normalized Difference Water Index
[Termes IGN] surveillance sanitaire
[Termes IGN] température de l'air
[Termes IGN] TRMMRésumé : (éditeur) Mosquitoes are vectors of many disease-causing agents, such as malaria, dengue, chikungunya and yellow fever. According to the World Health Organisation, they cause several hundred thousand deaths each year. They are also the cause of zoonoses, such as Rift Valley fever and West Nile fever. In this context, there is a great need for operational tools to guide surveillance and control actions, both in the South - tropical and subtropical areas are the most affected by mosquito-borne diseases - and in the North, where the establishment of new species such as the tiger mosquito increases the risk of disease emergence. Earth observation imagery is of great interest to meet these needs: the spatial distribution and temporal dynamics of mosquitoes are influenced by climatic (temperature, precipitation, humidity) and environmental (availability of water areas, vegetation) variables, indicators of which can be derived from satellite imagery. Many recent studies have developed innovative methods combining remote sensing and spatial modelling to predict the spatial and temporal dynamics of mosquito vectors and associated diseases. Beyond the feasibility study, some of these methods have led to tools and processing chains that are now operational and used by public health actors and vector control operators. This book, intended for students and researchers as well as public health actors, presents a summary of this research work and these tools. Note de contenu : Introduction générale
Partie I- Informations spatiales pour la surveillance des moustiques vecteurs et des maladies associées
1- Liens entre moustiques vecteurs et environnement : apport des méthodes de télédétection satellite
2- Indices spectraux et classifications d’images multispectrales pour la cartographie du risque vectoriel
3- Estimation des températures de l’air à partir d’images satellite et de stations météorologiques
4- Du recensement au bâtiment : génération de populations synthétiques
5- Texture des images satellite et caractérisation des milieux urbains favorables aux moustiques vecteurs
Partie II- Analyser et prédire l’effet de variables environnementales sur la distribution et la dynamique des moustiques vecteurs
6- Modèles basés sur les données : cartographier la distribution spatiale des vecteurs
7- Modèles fondés sur les connaissances : exemple d’un outil d’évaluation multicritère pour la santé publique
8- Arbocarto : un modèle mécaniste fondé sur le cycle de vie des moustiques Aedes
9- Simulation spatiale du risque de propagation de la dengue à partir de modèles comportementaux vecteurs et hôtes
Conclusion générale et perspectivesNuméro de notice : 24096 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.35690/978-2-7592-3629-9 En ligne : https://doi.org/10.35690/978-2-7592-3629-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102570 Fast unsupervised multi-scale characterization of urban landscapes based on Earth observation data / Claire Teillet in Remote sensing, vol 13 n° 12 (June-2 2021)
[article]
Titre : Fast unsupervised multi-scale characterization of urban landscapes based on Earth observation data Type de document : Article/Communication Auteurs : Claire Teillet, Auteur ; Benjamin Pillot, Auteur ; Thibault Catry, Auteur ; Laurent Demagistri, Auteur ; Dominique Lyszczarz, Auteur ; Marc Lang, Auteur ; Pierre Couteron, Auteur ; Nicolas Barbier, Auteur ; Arsène Adou Kouassi, Auteur ; Quentin Gunther , Auteur ; Nadine Dessay, Auteur Année de publication : 2021 Projets : GeoSud / , TOSCA / Article en page(s) : n° 2398 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Brasilia
[Termes IGN] caractérisation
[Termes IGN] Côte d'Ivoire
[Termes IGN] empreinte
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] paysage urbain
[Termes IGN] texture d'image
[Termes IGN] zone urbaineRésumé : (auteur) Most remote sensing studies of urban areas focus on a single scale, using supervised methodologies and very few analyses focus on the “neighborhood” scale. The lack of multi-scale analysis, together with the scarcity of training and validation datasets in many countries lead us to propose a single fast unsupervised method for the characterization of urban areas. With the FOTOTEX algorithm, this paper introduces a texture-based method to characterize urban areas at three nested scales: macro-scale (urban footprint), meso-scale (“neighbourhoods”) and micro-scale (objects). FOTOTEX combines a Fast Fourier Transform and a Principal Component Analysis to convert texture into frequency signal. Several parameters were tested over Sentinel-2 and Pleiades imagery on Bouake and Brasilia. Results showed that a single Sentinel-2 image better assesses the urban footprint than the global products. Pleiades images allowed discriminating neighbourhoods and urban objects using texture, which is correlated with metrics such as building density, built-up and vegetation proportions. The best configurations for each scale of analysis were determined and recommendations provided to users. The open FOTOTEX algorithm demonstrated a strong potential to characterize the three nested scales of urban areas, especially when training and validation data are scarce, and computing resources limited. Numéro de notice : A2021-505 Affiliation des auteurs : ENSG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13122398 Date de publication en ligne : 19/06/2021 En ligne : https://doi.org/10.3390/rs13122398 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98125
in Remote sensing > vol 13 n° 12 (June-2 2021) . - n° 2398[article]Innovative Methods and Products of the " Urbanization and Artificialization" Scientific Expertise Centre / Anne Puissant (2019)
Titre : Innovative Methods and Products of the " Urbanization and Artificialization" Scientific Expertise Centre Type de document : Article/Communication Auteurs : Anne Puissant, Auteur ; Arnaud Le Bris , Auteur ; Vincent Thieron, Auteur ; Thomas Corpetti, Auteur ; Thibault Catry, Auteur ; Sébastien Gadal, Auteur ; Xavier Briottet , Auteur ; Remy Cression, Auteur ; Nicolas Baghdadi, Auteur ; Arnaud Sellé, Auteur Editeur : Paris : HAL Année de publication : 2019 Conférence : LPS 2019, ESA Living Planet Symposium 13/05/2019 17/05/2019 Milan Italie programme sans actes Importance : 2 p. Format : 21 x 30 cm Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données localisées
[Termes IGN] empreinte écologique
[Termes IGN] information scientifique et technique
[Termes IGN] télédétection
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) he THEIA Land Data and Services Centre (www.theia-land.fr) is a consortium of 12 French public institutions involved in Earth observation and environmental sciences (CEA, CEREMA, CIRAD, CNES, IGN, INRA, CNRS, IRD, Irstea, Météo France, AgroParisTech, and ONERA). THEIA has been initiated in 2012 with the objective of increasing the use of space data by the scientific community and the public actors. THEIA structured the French scientific community 1) through a mutualized Service and Data Infrastructure (SDI) distributed between several centers, allowing access to a variety of products; 2) through the setup of Regional Animation Networks (RAN) to federate and animate users (scientists and public / private actors) and 3) through Scientific Expertise Centres (SEC) clustering virtual research groups on a thematic domain. One of this SEC is the "Urbanization and Artificialization” Centre clustering experts in multi-sensor urban remote sensing. THEIA in collaboration with ODATIS (Data and Service for the Ocean), ForM@Ter (Data and Service for the Solid Earth), and AERIS (Data and Service for the Atmosphere) form the "Earth System" Research Infrastructure. The objective of this poster is to present recent (>2016) innovations of the URBAN SEC in terms of (1) development of algorithms useful for urban remote sensing using optical and SAR sensors, (2) validation of the urban products provided by the THEIA Land Service and Data Infrastructure, and (3) demonstration of user-tailored applications for urban studies. The Urban Expert Centre brings together researchers and engineers from several institutes: LIVE - Strasbourg, IGN-LaSTIG - Univ. Paris Est, CESBIO – Toulouse, LETG - Rennes, Irstea – Montpellier, TETIS - Montpellier, INP Bordeaux, IRD, ESPACE-DEV - Montpellier, ESPACE - Nice, ONERA. Research results and methods linked to (1) the detection and mapping of the urban footprint at an annual frequency; (2) the identification of urban fabrics, (3) the mapping of green networks within the cities. In parallel, the group proposes to summarize and identify relevant indicators (parameters) dedicated to urban planning and management. Numéro de notice : C2019-046 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Poster nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://hal.archives-ouvertes.fr/hal-02135846 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95429