Détail de l'auteur
Auteur Lukáš Gábor |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
How do species and data characteristics affect species distribution models and when to use environmental filtering? / Lukáš Gábor in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)
[article]
Titre : How do species and data characteristics affect species distribution models and when to use environmental filtering? Type de document : Article/Communication Auteurs : Lukáš Gábor, Auteur ; Vítězslav Moudrý, Auteur ; Vojtěch Barták, Auteur ; Vincent Lecours, Auteur Année de publication : 2020 Article en page(s) : pp 1567 - 1584 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] données environnementales
[Termes IGN] données localisées
[Termes IGN] échantillonnage (statistique)
[Termes IGN] entropie maximale
[Termes IGN] erreur d'échantillon
[Termes IGN] filtrage d'information
[Termes IGN] interaction spatialeRésumé : (auteur) Species distribution models (SDMs) are widely used in ecology and conservation. However, their performance is known to be affected by a variety of factors related to species occurrence characteristics. In this study, we used a virtual species approach to overcome the difficulties associated with testing of combined effects of those factors on performance of presence-only SDMs when using real data. We focused on the individual and combined roles of factors related to response variable (i.e. sample size, sampling bias, environmental filtering, species prevalence, and species response to environmental gradients). Results suggest that environmental filtering is not necessarily helpful and should not be performed blindly, without evidence of bias in species occurrences. The more gradual the species response to environmental gradients is, the greater is the model sensitivity to an inappropriate use of environmental filtering, although this sensitivity decreases with higher species prevalence. Results show that SDMs are affected to the greatest degree by the species response to environmental gradients, species prevalence, and sample size. Models’ accuracy decreased with sample size below 300 presences. Furthermore, a high level of interactions among individual factors was observed. Ignoring the combined effects of factors may lead to misleading outcomes and conclusions. Numéro de notice : A2020-414 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1615070 Date de publication en ligne : 14/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1615070 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95465
in International journal of geographical information science IJGIS > vol 34 n° 8 (August 2020) . - pp 1567 - 1584[article]