Détail de l'auteur
Auteur Zhanmang Liao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Potential of texture from SAR tomographic images for forest aboveground biomass estimation / Zhanmang Liao in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
[article]
Titre : Potential of texture from SAR tomographic images for forest aboveground biomass estimation Type de document : Article/Communication Auteurs : Zhanmang Liao, Auteur ; Binbin He, Auteur ; Xingwen Quan, Auteur Année de publication : 2020 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse texturale
[Termes IGN] bande P
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] image radar moirée
[Termes IGN] rétrodiffusion
[Termes IGN] tomographie radarRésumé : (auteur) Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation. Numéro de notice : A2020-447 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102049 Date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102049 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95523
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020) . - 15 p.[article]